Loading…

An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy

A simple model is presented to illustrate the equilibrium thermostatistics of a nonentensive finite system. Interaction between the finite system and the reservoir is taken into account as a nonextensive term λH1H2 in the expression of total energy (H1 and H2 are the energy of the finite system and...

Full description

Saved in:
Bibliographic Details
Published in:Physica A 2012-06, Vol.391 (11), p.3140-3150
Main Authors: Jiang, J., Wang, R., Lysogorskii, Y., Zvezdov, D., Tayurskii, D., Wang, Q.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733
cites cdi_FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733
container_end_page 3150
container_issue 11
container_start_page 3140
container_title Physica A
container_volume 391
creator Jiang, J.
Wang, R.
Lysogorskii, Y.
Zvezdov, D.
Tayurskii, D.
Wang, Q.A.
description A simple model is presented to illustrate the equilibrium thermostatistics of a nonentensive finite system. Interaction between the finite system and the reservoir is taken into account as a nonextensive term λH1H2 in the expression of total energy (H1 and H2 are the energy of the finite system and the reservoir respectively, λ is nonadditivity parameter). In the present paper, a case with harmonic reservoir potential is considered. Energy probability distribution, average energy, heat capacity and entropy function for energy distribution are derived in different finite systems including those with constant density of state in energy, the ideal gas and the phonon gas. ► Thermostatistics. ► Nonextensive finite system. ► Probability distribution.
doi_str_mv 10.1016/j.physa.2012.01.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671388601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437112000222</els_id><sourcerecordid>1671388601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVJoZu0T9CLjr14q5G8slzoISxJGwjkkpyFLI3JLLa0keTQffs63ZwLP8xh_m9gPsa-gtiCAP39sD0-n4rbSgFyK2CN_MA2YDrVSID-gm2E6kzTqg4-sctSDkII6JTcMH8dOb4sNNGQaZl5fcY8p1JdpVLJF55G7nhMEf9UjIVekY8UqSIvp1Jx_sH3bt2SdxMPK5JpWCqlyF0MHGPN6Xj6zD6Obir45X1esafbm8f97-b-4dfd_vq-8Urp2vTBw-AHD-3O7EaHeicxBC29CSb0utejCz0MEpVGCMF40XbSj60fjGtDp9QV-3a-e8zpZcFS7UzF4zS5iGkpFnQHyhgtYK2qc9XnVErG0R4zzS6fLAj7ptQe7D-l9k2pFbBGrtTPM4XrF6-E2RZPGD0GyuirDYn-y_8FWjaD9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671388601</pqid></control><display><type>article</type><title>An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy</title><source>Elsevier</source><creator>Jiang, J. ; Wang, R. ; Lysogorskii, Y. ; Zvezdov, D. ; Tayurskii, D. ; Wang, Q.A.</creator><creatorcontrib>Jiang, J. ; Wang, R. ; Lysogorskii, Y. ; Zvezdov, D. ; Tayurskii, D. ; Wang, Q.A.</creatorcontrib><description>A simple model is presented to illustrate the equilibrium thermostatistics of a nonentensive finite system. Interaction between the finite system and the reservoir is taken into account as a nonextensive term λH1H2 in the expression of total energy (H1 and H2 are the energy of the finite system and the reservoir respectively, λ is nonadditivity parameter). In the present paper, a case with harmonic reservoir potential is considered. Energy probability distribution, average energy, heat capacity and entropy function for energy distribution are derived in different finite systems including those with constant density of state in energy, the ideal gas and the phonon gas. ► Thermostatistics. ► Nonextensive finite system. ► Probability distribution.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2012.01.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Canonical distribution ; Energy distribution ; Entropy ; Heat capacity ; Mathematical analysis ; Mathematical models ; Nonextensive finite system ; Reservoirs ; Specific heat ; Statistical mechanics</subject><ispartof>Physica A, 2012-06, Vol.391 (11), p.3140-3150</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733</citedby><cites>FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Jiang, J.</creatorcontrib><creatorcontrib>Wang, R.</creatorcontrib><creatorcontrib>Lysogorskii, Y.</creatorcontrib><creatorcontrib>Zvezdov, D.</creatorcontrib><creatorcontrib>Tayurskii, D.</creatorcontrib><creatorcontrib>Wang, Q.A.</creatorcontrib><title>An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy</title><title>Physica A</title><description>A simple model is presented to illustrate the equilibrium thermostatistics of a nonentensive finite system. Interaction between the finite system and the reservoir is taken into account as a nonextensive term λH1H2 in the expression of total energy (H1 and H2 are the energy of the finite system and the reservoir respectively, λ is nonadditivity parameter). In the present paper, a case with harmonic reservoir potential is considered. Energy probability distribution, average energy, heat capacity and entropy function for energy distribution are derived in different finite systems including those with constant density of state in energy, the ideal gas and the phonon gas. ► Thermostatistics. ► Nonextensive finite system. ► Probability distribution.</description><subject>Canonical distribution</subject><subject>Energy distribution</subject><subject>Entropy</subject><subject>Heat capacity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonextensive finite system</subject><subject>Reservoirs</subject><subject>Specific heat</subject><subject>Statistical mechanics</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVJoZu0T9CLjr14q5G8slzoISxJGwjkkpyFLI3JLLa0keTQffs63ZwLP8xh_m9gPsa-gtiCAP39sD0-n4rbSgFyK2CN_MA2YDrVSID-gm2E6kzTqg4-sctSDkII6JTcMH8dOb4sNNGQaZl5fcY8p1JdpVLJF55G7nhMEf9UjIVekY8UqSIvp1Jx_sH3bt2SdxMPK5JpWCqlyF0MHGPN6Xj6zD6Obir45X1esafbm8f97-b-4dfd_vq-8Urp2vTBw-AHD-3O7EaHeicxBC29CSb0utejCz0MEpVGCMF40XbSj60fjGtDp9QV-3a-e8zpZcFS7UzF4zS5iGkpFnQHyhgtYK2qc9XnVErG0R4zzS6fLAj7ptQe7D-l9k2pFbBGrtTPM4XrF6-E2RZPGD0GyuirDYn-y_8FWjaD9g</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Jiang, J.</creator><creator>Wang, R.</creator><creator>Lysogorskii, Y.</creator><creator>Zvezdov, D.</creator><creator>Tayurskii, D.</creator><creator>Wang, Q.A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120601</creationdate><title>An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy</title><author>Jiang, J. ; Wang, R. ; Lysogorskii, Y. ; Zvezdov, D. ; Tayurskii, D. ; Wang, Q.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Canonical distribution</topic><topic>Energy distribution</topic><topic>Entropy</topic><topic>Heat capacity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonextensive finite system</topic><topic>Reservoirs</topic><topic>Specific heat</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, J.</creatorcontrib><creatorcontrib>Wang, R.</creatorcontrib><creatorcontrib>Lysogorskii, Y.</creatorcontrib><creatorcontrib>Zvezdov, D.</creatorcontrib><creatorcontrib>Tayurskii, D.</creatorcontrib><creatorcontrib>Wang, Q.A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, J.</au><au>Wang, R.</au><au>Lysogorskii, Y.</au><au>Zvezdov, D.</au><au>Tayurskii, D.</au><au>Wang, Q.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy</atitle><jtitle>Physica A</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>391</volume><issue>11</issue><spage>3140</spage><epage>3150</epage><pages>3140-3150</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>A simple model is presented to illustrate the equilibrium thermostatistics of a nonentensive finite system. Interaction between the finite system and the reservoir is taken into account as a nonextensive term λH1H2 in the expression of total energy (H1 and H2 are the energy of the finite system and the reservoir respectively, λ is nonadditivity parameter). In the present paper, a case with harmonic reservoir potential is considered. Energy probability distribution, average energy, heat capacity and entropy function for energy distribution are derived in different finite systems including those with constant density of state in energy, the ideal gas and the phonon gas. ► Thermostatistics. ► Nonextensive finite system. ► Probability distribution.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2012.01.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-4371
ispartof Physica A, 2012-06, Vol.391 (11), p.3140-3150
issn 0378-4371
1873-2119
language eng
recordid cdi_proquest_miscellaneous_1671388601
source Elsevier
subjects Canonical distribution
Energy distribution
Entropy
Heat capacity
Mathematical analysis
Mathematical models
Nonextensive finite system
Reservoirs
Specific heat
Statistical mechanics
title An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20equilibrium%20thermostatistics%20of%20a%20nonextensive%20finite%20system:%20Canonical%20distribution%20and%20entropy&rft.jtitle=Physica%20A&rft.au=Jiang,%20J.&rft.date=2012-06-01&rft.volume=391&rft.issue=11&rft.spage=3140&rft.epage=3150&rft.pages=3140-3150&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2012.01.012&rft_dat=%3Cproquest_cross%3E1671388601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671388601&rft_id=info:pmid/&rfr_iscdi=true