Loading…
An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy
A simple model is presented to illustrate the equilibrium thermostatistics of a nonentensive finite system. Interaction between the finite system and the reservoir is taken into account as a nonextensive term λH1H2 in the expression of total energy (H1 and H2 are the energy of the finite system and...
Saved in:
Published in: | Physica A 2012-06, Vol.391 (11), p.3140-3150 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733 |
container_end_page | 3150 |
container_issue | 11 |
container_start_page | 3140 |
container_title | Physica A |
container_volume | 391 |
creator | Jiang, J. Wang, R. Lysogorskii, Y. Zvezdov, D. Tayurskii, D. Wang, Q.A. |
description | A simple model is presented to illustrate the equilibrium thermostatistics of a nonentensive finite system. Interaction between the finite system and the reservoir is taken into account as a nonextensive term λH1H2 in the expression of total energy (H1 and H2 are the energy of the finite system and the reservoir respectively, λ is nonadditivity parameter). In the present paper, a case with harmonic reservoir potential is considered. Energy probability distribution, average energy, heat capacity and entropy function for energy distribution are derived in different finite systems including those with constant density of state in energy, the ideal gas and the phonon gas.
► Thermostatistics. ► Nonextensive finite system. ► Probability distribution. |
doi_str_mv | 10.1016/j.physa.2012.01.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671388601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378437112000222</els_id><sourcerecordid>1671388601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVJoZu0T9CLjr14q5G8slzoISxJGwjkkpyFLI3JLLa0keTQffs63ZwLP8xh_m9gPsa-gtiCAP39sD0-n4rbSgFyK2CN_MA2YDrVSID-gm2E6kzTqg4-sctSDkII6JTcMH8dOb4sNNGQaZl5fcY8p1JdpVLJF55G7nhMEf9UjIVekY8UqSIvp1Jx_sH3bt2SdxMPK5JpWCqlyF0MHGPN6Xj6zD6Obir45X1esafbm8f97-b-4dfd_vq-8Urp2vTBw-AHD-3O7EaHeicxBC29CSb0utejCz0MEpVGCMF40XbSj60fjGtDp9QV-3a-e8zpZcFS7UzF4zS5iGkpFnQHyhgtYK2qc9XnVErG0R4zzS6fLAj7ptQe7D-l9k2pFbBGrtTPM4XrF6-E2RZPGD0GyuirDYn-y_8FWjaD9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671388601</pqid></control><display><type>article</type><title>An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy</title><source>Elsevier</source><creator>Jiang, J. ; Wang, R. ; Lysogorskii, Y. ; Zvezdov, D. ; Tayurskii, D. ; Wang, Q.A.</creator><creatorcontrib>Jiang, J. ; Wang, R. ; Lysogorskii, Y. ; Zvezdov, D. ; Tayurskii, D. ; Wang, Q.A.</creatorcontrib><description>A simple model is presented to illustrate the equilibrium thermostatistics of a nonentensive finite system. Interaction between the finite system and the reservoir is taken into account as a nonextensive term λH1H2 in the expression of total energy (H1 and H2 are the energy of the finite system and the reservoir respectively, λ is nonadditivity parameter). In the present paper, a case with harmonic reservoir potential is considered. Energy probability distribution, average energy, heat capacity and entropy function for energy distribution are derived in different finite systems including those with constant density of state in energy, the ideal gas and the phonon gas.
► Thermostatistics. ► Nonextensive finite system. ► Probability distribution.</description><identifier>ISSN: 0378-4371</identifier><identifier>EISSN: 1873-2119</identifier><identifier>DOI: 10.1016/j.physa.2012.01.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Canonical distribution ; Energy distribution ; Entropy ; Heat capacity ; Mathematical analysis ; Mathematical models ; Nonextensive finite system ; Reservoirs ; Specific heat ; Statistical mechanics</subject><ispartof>Physica A, 2012-06, Vol.391 (11), p.3140-3150</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733</citedby><cites>FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Jiang, J.</creatorcontrib><creatorcontrib>Wang, R.</creatorcontrib><creatorcontrib>Lysogorskii, Y.</creatorcontrib><creatorcontrib>Zvezdov, D.</creatorcontrib><creatorcontrib>Tayurskii, D.</creatorcontrib><creatorcontrib>Wang, Q.A.</creatorcontrib><title>An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy</title><title>Physica A</title><description>A simple model is presented to illustrate the equilibrium thermostatistics of a nonentensive finite system. Interaction between the finite system and the reservoir is taken into account as a nonextensive term λH1H2 in the expression of total energy (H1 and H2 are the energy of the finite system and the reservoir respectively, λ is nonadditivity parameter). In the present paper, a case with harmonic reservoir potential is considered. Energy probability distribution, average energy, heat capacity and entropy function for energy distribution are derived in different finite systems including those with constant density of state in energy, the ideal gas and the phonon gas.
► Thermostatistics. ► Nonextensive finite system. ► Probability distribution.</description><subject>Canonical distribution</subject><subject>Energy distribution</subject><subject>Entropy</subject><subject>Heat capacity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonextensive finite system</subject><subject>Reservoirs</subject><subject>Specific heat</subject><subject>Statistical mechanics</subject><issn>0378-4371</issn><issn>1873-2119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVJoZu0T9CLjr14q5G8slzoISxJGwjkkpyFLI3JLLa0keTQffs63ZwLP8xh_m9gPsa-gtiCAP39sD0-n4rbSgFyK2CN_MA2YDrVSID-gm2E6kzTqg4-sctSDkII6JTcMH8dOb4sNNGQaZl5fcY8p1JdpVLJF55G7nhMEf9UjIVekY8UqSIvp1Jx_sH3bt2SdxMPK5JpWCqlyF0MHGPN6Xj6zD6Obir45X1esafbm8f97-b-4dfd_vq-8Urp2vTBw-AHD-3O7EaHeicxBC29CSb0utejCz0MEpVGCMF40XbSj60fjGtDp9QV-3a-e8zpZcFS7UzF4zS5iGkpFnQHyhgtYK2qc9XnVErG0R4zzS6fLAj7ptQe7D-l9k2pFbBGrtTPM4XrF6-E2RZPGD0GyuirDYn-y_8FWjaD9g</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Jiang, J.</creator><creator>Wang, R.</creator><creator>Lysogorskii, Y.</creator><creator>Zvezdov, D.</creator><creator>Tayurskii, D.</creator><creator>Wang, Q.A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120601</creationdate><title>An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy</title><author>Jiang, J. ; Wang, R. ; Lysogorskii, Y. ; Zvezdov, D. ; Tayurskii, D. ; Wang, Q.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Canonical distribution</topic><topic>Energy distribution</topic><topic>Entropy</topic><topic>Heat capacity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonextensive finite system</topic><topic>Reservoirs</topic><topic>Specific heat</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, J.</creatorcontrib><creatorcontrib>Wang, R.</creatorcontrib><creatorcontrib>Lysogorskii, Y.</creatorcontrib><creatorcontrib>Zvezdov, D.</creatorcontrib><creatorcontrib>Tayurskii, D.</creatorcontrib><creatorcontrib>Wang, Q.A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, J.</au><au>Wang, R.</au><au>Lysogorskii, Y.</au><au>Zvezdov, D.</au><au>Tayurskii, D.</au><au>Wang, Q.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy</atitle><jtitle>Physica A</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>391</volume><issue>11</issue><spage>3140</spage><epage>3150</epage><pages>3140-3150</pages><issn>0378-4371</issn><eissn>1873-2119</eissn><abstract>A simple model is presented to illustrate the equilibrium thermostatistics of a nonentensive finite system. Interaction between the finite system and the reservoir is taken into account as a nonextensive term λH1H2 in the expression of total energy (H1 and H2 are the energy of the finite system and the reservoir respectively, λ is nonadditivity parameter). In the present paper, a case with harmonic reservoir potential is considered. Energy probability distribution, average energy, heat capacity and entropy function for energy distribution are derived in different finite systems including those with constant density of state in energy, the ideal gas and the phonon gas.
► Thermostatistics. ► Nonextensive finite system. ► Probability distribution.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physa.2012.01.012</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-4371 |
ispartof | Physica A, 2012-06, Vol.391 (11), p.3140-3150 |
issn | 0378-4371 1873-2119 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671388601 |
source | Elsevier |
subjects | Canonical distribution Energy distribution Entropy Heat capacity Mathematical analysis Mathematical models Nonextensive finite system Reservoirs Specific heat Statistical mechanics |
title | An equilibrium thermostatistics of a nonextensive finite system: Canonical distribution and entropy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A21%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20equilibrium%20thermostatistics%20of%20a%20nonextensive%20finite%20system:%20Canonical%20distribution%20and%20entropy&rft.jtitle=Physica%20A&rft.au=Jiang,%20J.&rft.date=2012-06-01&rft.volume=391&rft.issue=11&rft.spage=3140&rft.epage=3150&rft.pages=3140-3150&rft.issn=0378-4371&rft.eissn=1873-2119&rft_id=info:doi/10.1016/j.physa.2012.01.012&rft_dat=%3Cproquest_cross%3E1671388601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-9dc1bcbc14585fae652edd62c8d8d9696fad91b2e36e1dd8c0472cf4cb8a4d733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671388601&rft_id=info:pmid/&rfr_iscdi=true |