Loading…

Preparation of Gd Complex-Immobilized Silica Particles and Their Application to MRI

A preparation method for Gd-ethylenediaminetetraacetic acid disodium salt dihydrate (ETDA) complex-immobilized silica particles (Gd-EDTA/SiO2) is proposed. Preparation of spherical silica particles was performed by a sol-gel method at 35°C using 0.2 M tetraethylorthosilicate, 25 M H2O, and 0.01 M Na...

Full description

Saved in:
Bibliographic Details
Published in:ISRN nanotechnology 2013-01, Vol.2013, p.1-6
Main Authors: Kobayashi, Yoshio, Morimoto, Hikaru, Nakagawa, Tomohiko, Kubota, Yohsuke, Gonda, Kohsuke, Ohuchi, Noriaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A preparation method for Gd-ethylenediaminetetraacetic acid disodium salt dihydrate (ETDA) complex-immobilized silica particles (Gd-EDTA/SiO2) is proposed. Preparation of spherical silica particles was performed by a sol-gel method at 35°C using 0.2 M tetraethylorthosilicate, 25 M H2O, and 0.01 M NaOH in ethanol, which produced silica particles with an average size of 80.4±14.9 nm. Immobilization of Gd-EDTA on the silica particles was conducted at 35°C by introducing amino groups on the silica particles with (3-aminopropyl)trimethoxysilane at pH 3 (NH2/SiO2) and then making Gd-EDTA act on the NH2/SiO2 particles at pH 5. The as-prepared Gd-EDTA/SiO2 particle colloid solution was concentrated up to a Gd concentration of 0.347 mM by centrifugation. The sphere structure of Gd-EDTA/SiO2 particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated Gd-EDTA/SiO2 colloid solution revealed good MRI properties. A relaxivity value for T1-weighted imaging was as high as 5.15 mM−1 s−1, that was comparable to that for a commercial Gd complex contrast agent.
ISSN:2090-6072
2090-6072
DOI:10.1155/2013/908614