Loading…
High Resolution through Graded-Index Microoptics
By solving Helmholtz equations, relationships to describe propagating modes in an arbitrary graded-index planar waveguide are derived. We show that in the quadratic- and secant-index waveguides a minimal mode width is 0.4λ/n, where λ is the wavelength in free space and n is the refractive index on t...
Saved in:
Published in: | Advances in optical technologies 2012, Vol.2012 (2012), p.1-9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4055-d4e62847f4a000c879f5003456e71e79b0ec41f6e29c70782d02831e10dbda6e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a4055-d4e62847f4a000c879f5003456e71e79b0ec41f6e29c70782d02831e10dbda6e3 |
container_end_page | 9 |
container_issue | 2012 |
container_start_page | 1 |
container_title | Advances in optical technologies |
container_volume | 2012 |
creator | Kotlyar, Victor V. Kovalev, Alexey A. Nalimov, Anton G. Stafeev, Sergey S. |
description | By solving Helmholtz equations, relationships to describe propagating modes in an arbitrary graded-index planar waveguide are derived. We show that in the quadratic- and secant-index waveguides a minimal mode width is 0.4λ/n, where λ is the wavelength in free space and n is the refractive index on the fiber axis. By modeling in FullWAVE, we show that the high-resolution imaging can be achieved with half-pitch graded-index Mikaelian microlenses (ML) and Maxwell’s “fisheye” lenses. It is shown that using a 2D ML, the point source can be imaged near the lens surface as a light spot with the full width at half maximum (FWHM) of 0.12λ. This value is close to the diffraction limit for silicon (n=3.47) in 2D media FWHM=0.44λ/n=0.127λ. We also show that half-pitch ML is able to resolve at half-maximum two close point sources separated by a 0.3λ distance. |
doi_str_mv | 10.1155/2012/647165 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671389965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1221893228</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4055-d4e62847f4a000c879f5003456e71e79b0ec41f6e29c70782d02831e10dbda6e3</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVk2eh4EWU2Jn9zlGKtoWKIHoO22RiU9KkZhPUf--WqAcvPc0wPMwwL2PnCLeISo05IB9raVCrAzZAbU2kJZjD317E4pideL8G0DxGPWAwK95Wo2fyddm1RV2N2lVTd2E0bVxGWTSvMvocPRZpU9fbtkj9KTvKXenp7KcO2evD_ctkFi2epvPJ3SJyEpSKMkmaW2ly6QAgtSbOFYCQSpNBMvESKJWYa-JxasBYngG3AgkhW2ZOkxiyq37vtqnfO_Jtsil8SmXpKqo7n6A2KGwca7Wfco42FjwcGLLLf3Rdd00VHkkQhJVgFZqgbnoVvva-oTzZNsXGNV8BJbugk13QSR900Ne9XhVV5j6KPfiixxQI5e4PyxARovgG-GCC8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038408517</pqid></control><display><type>article</type><title>High Resolution through Graded-Index Microoptics</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Kotlyar, Victor V. ; Kovalev, Alexey A. ; Nalimov, Anton G. ; Stafeev, Sergey S.</creator><contributor>Righini, Giancarlo</contributor><creatorcontrib>Kotlyar, Victor V. ; Kovalev, Alexey A. ; Nalimov, Anton G. ; Stafeev, Sergey S. ; Righini, Giancarlo</creatorcontrib><description>By solving Helmholtz equations, relationships to describe propagating modes in an arbitrary graded-index planar waveguide are derived. We show that in the quadratic- and secant-index waveguides a minimal mode width is 0.4λ/n, where λ is the wavelength in free space and n is the refractive index on the fiber axis. By modeling in FullWAVE, we show that the high-resolution imaging can be achieved with half-pitch graded-index Mikaelian microlenses (ML) and Maxwell’s “fisheye” lenses. It is shown that using a 2D ML, the point source can be imaged near the lens surface as a light spot with the full width at half maximum (FWHM) of 0.12λ. This value is close to the diffraction limit for silicon (n=3.47) in 2D media FWHM=0.44λ/n=0.127λ. We also show that half-pitch ML is able to resolve at half-maximum two close point sources separated by a 0.3λ distance.</description><identifier>ISSN: 1687-6393</identifier><identifier>EISSN: 1687-6407</identifier><identifier>DOI: 10.1155/2012/647165</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Composite materials ; Diffraction ; Experiments ; Helmholtz equations ; Imaging ; Lasers ; Lenses ; Mathematical models ; Point sources ; Two dimensional ; Wave propagation</subject><ispartof>Advances in optical technologies, 2012, Vol.2012 (2012), p.1-9</ispartof><rights>Copyright © 2012 Victor V. Kotlyar et al.</rights><rights>Copyright © 2012 Victor V. Kotlyar et al. Victor V. Kotlyar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4055-d4e62847f4a000c879f5003456e71e79b0ec41f6e29c70782d02831e10dbda6e3</citedby><cites>FETCH-LOGICAL-a4055-d4e62847f4a000c879f5003456e71e79b0ec41f6e29c70782d02831e10dbda6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1038408517/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1038408517?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,25732,27902,27903,27904,36991,36992,44569,74872</link.rule.ids></links><search><contributor>Righini, Giancarlo</contributor><creatorcontrib>Kotlyar, Victor V.</creatorcontrib><creatorcontrib>Kovalev, Alexey A.</creatorcontrib><creatorcontrib>Nalimov, Anton G.</creatorcontrib><creatorcontrib>Stafeev, Sergey S.</creatorcontrib><title>High Resolution through Graded-Index Microoptics</title><title>Advances in optical technologies</title><description>By solving Helmholtz equations, relationships to describe propagating modes in an arbitrary graded-index planar waveguide are derived. We show that in the quadratic- and secant-index waveguides a minimal mode width is 0.4λ/n, where λ is the wavelength in free space and n is the refractive index on the fiber axis. By modeling in FullWAVE, we show that the high-resolution imaging can be achieved with half-pitch graded-index Mikaelian microlenses (ML) and Maxwell’s “fisheye” lenses. It is shown that using a 2D ML, the point source can be imaged near the lens surface as a light spot with the full width at half maximum (FWHM) of 0.12λ. This value is close to the diffraction limit for silicon (n=3.47) in 2D media FWHM=0.44λ/n=0.127λ. We also show that half-pitch ML is able to resolve at half-maximum two close point sources separated by a 0.3λ distance.</description><subject>Composite materials</subject><subject>Diffraction</subject><subject>Experiments</subject><subject>Helmholtz equations</subject><subject>Imaging</subject><subject>Lasers</subject><subject>Lenses</subject><subject>Mathematical models</subject><subject>Point sources</subject><subject>Two dimensional</subject><subject>Wave propagation</subject><issn>1687-6393</issn><issn>1687-6407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0E1Lw0AQBuBFFKzVk2eh4EWU2Jn9zlGKtoWKIHoO22RiU9KkZhPUf--WqAcvPc0wPMwwL2PnCLeISo05IB9raVCrAzZAbU2kJZjD317E4pideL8G0DxGPWAwK95Wo2fyddm1RV2N2lVTd2E0bVxGWTSvMvocPRZpU9fbtkj9KTvKXenp7KcO2evD_ctkFi2epvPJ3SJyEpSKMkmaW2ly6QAgtSbOFYCQSpNBMvESKJWYa-JxasBYngG3AgkhW2ZOkxiyq37vtqnfO_Jtsil8SmXpKqo7n6A2KGwca7Wfco42FjwcGLLLf3Rdd00VHkkQhJVgFZqgbnoVvva-oTzZNsXGNV8BJbugk13QSR900Ne9XhVV5j6KPfiixxQI5e4PyxARovgG-GCC8Q</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Kotlyar, Victor V.</creator><creator>Kovalev, Alexey A.</creator><creator>Nalimov, Anton G.</creator><creator>Stafeev, Sergey S.</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7T7</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2012</creationdate><title>High Resolution through Graded-Index Microoptics</title><author>Kotlyar, Victor V. ; Kovalev, Alexey A. ; Nalimov, Anton G. ; Stafeev, Sergey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4055-d4e62847f4a000c879f5003456e71e79b0ec41f6e29c70782d02831e10dbda6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Composite materials</topic><topic>Diffraction</topic><topic>Experiments</topic><topic>Helmholtz equations</topic><topic>Imaging</topic><topic>Lasers</topic><topic>Lenses</topic><topic>Mathematical models</topic><topic>Point sources</topic><topic>Two dimensional</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotlyar, Victor V.</creatorcontrib><creatorcontrib>Kovalev, Alexey A.</creatorcontrib><creatorcontrib>Nalimov, Anton G.</creatorcontrib><creatorcontrib>Stafeev, Sergey S.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Advances in optical technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotlyar, Victor V.</au><au>Kovalev, Alexey A.</au><au>Nalimov, Anton G.</au><au>Stafeev, Sergey S.</au><au>Righini, Giancarlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Resolution through Graded-Index Microoptics</atitle><jtitle>Advances in optical technologies</jtitle><date>2012</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1687-6393</issn><eissn>1687-6407</eissn><abstract>By solving Helmholtz equations, relationships to describe propagating modes in an arbitrary graded-index planar waveguide are derived. We show that in the quadratic- and secant-index waveguides a minimal mode width is 0.4λ/n, where λ is the wavelength in free space and n is the refractive index on the fiber axis. By modeling in FullWAVE, we show that the high-resolution imaging can be achieved with half-pitch graded-index Mikaelian microlenses (ML) and Maxwell’s “fisheye” lenses. It is shown that using a 2D ML, the point source can be imaged near the lens surface as a light spot with the full width at half maximum (FWHM) of 0.12λ. This value is close to the diffraction limit for silicon (n=3.47) in 2D media FWHM=0.44λ/n=0.127λ. We also show that half-pitch ML is able to resolve at half-maximum two close point sources separated by a 0.3λ distance.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2012/647165</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6393 |
ispartof | Advances in optical technologies, 2012, Vol.2012 (2012), p.1-9 |
issn | 1687-6393 1687-6407 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671389965 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Composite materials Diffraction Experiments Helmholtz equations Imaging Lasers Lenses Mathematical models Point sources Two dimensional Wave propagation |
title | High Resolution through Graded-Index Microoptics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A37%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Resolution%20through%20Graded-Index%20Microoptics&rft.jtitle=Advances%20in%20optical%20technologies&rft.au=Kotlyar,%20Victor%20V.&rft.date=2012&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1687-6393&rft.eissn=1687-6407&rft_id=info:doi/10.1155/2012/647165&rft_dat=%3Cproquest_cross%3E1221893228%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4055-d4e62847f4a000c879f5003456e71e79b0ec41f6e29c70782d02831e10dbda6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038408517&rft_id=info:pmid/&rfr_iscdi=true |