Loading…
AN ELEMENTARY APPROACH TO A MODEL PROBLEM OF LAGERSTROM
The equation studied is $u^{\prime\prime}+\frac{n-1}{r}u^{\prime}+\varepsilon u\,u^{\prime}+ku^{\prime2}=0$, with boundary conditions $u\left(1\right)=0$, $u\left(\infty\right) =1$. This model equation has been studied by many authors since it was introduced in the 1950s by P. A. Lagerstrom. We use...
Saved in:
Published in: | SIAM journal on mathematical analysis 2009-01, Vol.40 (6), p.2421-2436 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-e757519f601dc1bb6ddb73fbf3272a29f75070dea714c84ad1f0212d495da3783 |
container_end_page | 2436 |
container_issue | 6 |
container_start_page | 2421 |
container_title | SIAM journal on mathematical analysis |
container_volume | 40 |
creator | HASTINGS, S. P MCLEOD, J. B |
description | The equation studied is $u^{\prime\prime}+\frac{n-1}{r}u^{\prime}+\varepsilon u\,u^{\prime}+ku^{\prime2}=0$, with boundary conditions $u\left(1\right)=0$, $u\left(\infty\right) =1$. This model equation has been studied by many authors since it was introduced in the 1950s by P. A. Lagerstrom. We use an elementary approach to show that there is an infinite series solution which is uniformly convergent on $1\leq r0$, $k\geq0$, and $n\geq1$. |
doi_str_mv | 10.1137/080718759 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671391022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597150241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-e757519f601dc1bb6ddb73fbf3272a29f75070dea714c84ad1f0212d495da3783</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFKzVg_9gEQQ9RGd2k0z2GNu0FdKmxHjwFDYfCy1pU7PtwX9vpKUHTwPDMy_Dy9g9wguipFcIgDAgT12wAYLyHELPvWQDAOk76CJcsxtr1wDouwoGjMIFj-JoHi2yMP3i4XKZJuFoxrOEh3yejKOY95u3XvBkwuNwGqUfWZrMb9mV0Y2t705zyD4nUTaaOXEyfR-FsVNKdPdOTR55qIwPWJVYFH5VFSRNYaQgoYUy5AFBVWtCtwxcXaEBgaJylVdpSYEcsqdj7q5rvw-13eeblS3rptHbuj3YHH1CqRCE6OnDP7puD922_y5XQioIyKcePR9R2bXWdrXJd91qo7ufHCH_azA_N9jbx1OgtqVuTKe35cqeD4QApRBJ_gLd_2dy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923908767</pqid></control><display><type>article</type><title>AN ELEMENTARY APPROACH TO A MODEL PROBLEM OF LAGERSTROM</title><source>ABI/INFORM Global</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>HASTINGS, S. P ; MCLEOD, J. B</creator><creatorcontrib>HASTINGS, S. P ; MCLEOD, J. B</creatorcontrib><description>The equation studied is $u^{\prime\prime}+\frac{n-1}{r}u^{\prime}+\varepsilon u\,u^{\prime}+ku^{\prime2}=0$, with boundary conditions $u\left(1\right)=0$, $u\left(\infty\right) =1$. This model equation has been studied by many authors since it was introduced in the 1950s by P. A. Lagerstrom. We use an elementary approach to show that there is an infinite series solution which is uniformly convergent on $1\leq r<\infty$. The first few terms are easily derived, from which one quickly deduces the inner and outer asymptotic expansions, with no matching procedure or a priori assumptions about the nature of the expansion. We also give a short and elementary existence and uniqueness proof which covers all $\varepsilon>0$, $k\geq0$, and $n\geq1$.</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/080718759</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Asymptotic expansions ; Boundary conditions ; Boundary value problems ; Exact sciences and technology ; Infinite series ; Matching ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Proving ; Sciences and techniques of general use ; Uniqueness</subject><ispartof>SIAM journal on mathematical analysis, 2009-01, Vol.40 (6), p.2421-2436</ispartof><rights>2009 INIST-CNRS</rights><rights>[Copyright] © 2009 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-e757519f601dc1bb6ddb73fbf3272a29f75070dea714c84ad1f0212d495da3783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/923908767?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3172,11669,27905,27906,36041,36042,44344</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22099117$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HASTINGS, S. P</creatorcontrib><creatorcontrib>MCLEOD, J. B</creatorcontrib><title>AN ELEMENTARY APPROACH TO A MODEL PROBLEM OF LAGERSTROM</title><title>SIAM journal on mathematical analysis</title><description>The equation studied is $u^{\prime\prime}+\frac{n-1}{r}u^{\prime}+\varepsilon u\,u^{\prime}+ku^{\prime2}=0$, with boundary conditions $u\left(1\right)=0$, $u\left(\infty\right) =1$. This model equation has been studied by many authors since it was introduced in the 1950s by P. A. Lagerstrom. We use an elementary approach to show that there is an infinite series solution which is uniformly convergent on $1\leq r<\infty$. The first few terms are easily derived, from which one quickly deduces the inner and outer asymptotic expansions, with no matching procedure or a priori assumptions about the nature of the expansion. We also give a short and elementary existence and uniqueness proof which covers all $\varepsilon>0$, $k\geq0$, and $n\geq1$.</description><subject>Applied mathematics</subject><subject>Asymptotic expansions</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Exact sciences and technology</subject><subject>Infinite series</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Proving</subject><subject>Sciences and techniques of general use</subject><subject>Uniqueness</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpd0E1Lw0AQBuBFFKzVg_9gEQQ9RGd2k0z2GNu0FdKmxHjwFDYfCy1pU7PtwX9vpKUHTwPDMy_Dy9g9wguipFcIgDAgT12wAYLyHELPvWQDAOk76CJcsxtr1wDouwoGjMIFj-JoHi2yMP3i4XKZJuFoxrOEh3yejKOY95u3XvBkwuNwGqUfWZrMb9mV0Y2t705zyD4nUTaaOXEyfR-FsVNKdPdOTR55qIwPWJVYFH5VFSRNYaQgoYUy5AFBVWtCtwxcXaEBgaJylVdpSYEcsqdj7q5rvw-13eeblS3rptHbuj3YHH1CqRCE6OnDP7puD922_y5XQioIyKcePR9R2bXWdrXJd91qo7ufHCH_azA_N9jbx1OgtqVuTKe35cqeD4QApRBJ_gLd_2dy</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>HASTINGS, S. P</creator><creator>MCLEOD, J. B</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>AN ELEMENTARY APPROACH TO A MODEL PROBLEM OF LAGERSTROM</title><author>HASTINGS, S. P ; MCLEOD, J. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-e757519f601dc1bb6ddb73fbf3272a29f75070dea714c84ad1f0212d495da3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied mathematics</topic><topic>Asymptotic expansions</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Exact sciences and technology</topic><topic>Infinite series</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Proving</topic><topic>Sciences and techniques of general use</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HASTINGS, S. P</creatorcontrib><creatorcontrib>MCLEOD, J. B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HASTINGS, S. P</au><au>MCLEOD, J. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN ELEMENTARY APPROACH TO A MODEL PROBLEM OF LAGERSTROM</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>40</volume><issue>6</issue><spage>2421</spage><epage>2436</epage><pages>2421-2436</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>The equation studied is $u^{\prime\prime}+\frac{n-1}{r}u^{\prime}+\varepsilon u\,u^{\prime}+ku^{\prime2}=0$, with boundary conditions $u\left(1\right)=0$, $u\left(\infty\right) =1$. This model equation has been studied by many authors since it was introduced in the 1950s by P. A. Lagerstrom. We use an elementary approach to show that there is an infinite series solution which is uniformly convergent on $1\leq r<\infty$. The first few terms are easily derived, from which one quickly deduces the inner and outer asymptotic expansions, with no matching procedure or a priori assumptions about the nature of the expansion. We also give a short and elementary existence and uniqueness proof which covers all $\varepsilon>0$, $k\geq0$, and $n\geq1$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/080718759</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1410 |
ispartof | SIAM journal on mathematical analysis, 2009-01, Vol.40 (6), p.2421-2436 |
issn | 0036-1410 1095-7154 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671391022 |
source | ABI/INFORM Global; LOCUS - SIAM's Online Journal Archive |
subjects | Applied mathematics Asymptotic expansions Boundary conditions Boundary value problems Exact sciences and technology Infinite series Matching Mathematical analysis Mathematical models Mathematics Numerical analysis Numerical analysis. Scientific computation Partial differential equations, boundary value problems Proving Sciences and techniques of general use Uniqueness |
title | AN ELEMENTARY APPROACH TO A MODEL PROBLEM OF LAGERSTROM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20ELEMENTARY%20APPROACH%20TO%20A%20MODEL%20PROBLEM%20OF%20LAGERSTROM&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=HASTINGS,%20S.%20P&rft.date=2009-01-01&rft.volume=40&rft.issue=6&rft.spage=2421&rft.epage=2436&rft.pages=2421-2436&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/080718759&rft_dat=%3Cproquest_cross%3E2597150241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-e757519f601dc1bb6ddb73fbf3272a29f75070dea714c84ad1f0212d495da3783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=923908767&rft_id=info:pmid/&rfr_iscdi=true |