Loading…
Ionic conductivity of solid polymer electrolytes for dye-sensitized solar cells
We developed an ionic conductivity model of solid polymer electrolytes for dye‐sensitized solar cells (DSSCs) based on the Nernst–Einstein equation in which the diffusion coefficient is derived from the molecular thermodynamic model. We introduced concentration‐dependence of the diffusion coefficien...
Saved in:
Published in: | Journal of applied polymer science 2010-09, Vol.117 (6), p.3582-3587 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We developed an ionic conductivity model of solid polymer electrolytes for dye‐sensitized solar cells (DSSCs) based on the Nernst–Einstein equation in which the diffusion coefficient is derived from the molecular thermodynamic model. We introduced concentration‐dependence of the diffusion coefficient into the model, and the diffusion coefficient was expressed by differentiating the chemical potential by concentration. The ionic conductivities of polymer electrolytes (PEO/LiI/I2 system) were investigated at various temperatures and compositions. We prepared a set of PEO in which an EO : LiI mole ratio of 10 : 1 was kept constant for PEO·LiI·(I2)n compositions with n = 0.02, 0.05, 0.1, 0.15, 0.2, and 0.3 (mole ratio of LiI : I2). The ionic conductivities of the electrolytes were measured using a stainless steel/polymer‐electrolyte/stainless steel sandwich‐type electrode structure using alternating current impedance analysis. The values calculated using the proposed model agree well with experimental data. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 |
---|---|
ISSN: | 0021-8995 1097-4628 1097-4628 |
DOI: | 10.1002/app.32243 |