Loading…

14,15N beam from cyanide compounds

We report here on the direct generation of a CN− ion beam for the production of a N ion beam to be used in nuclear astrophysics measurements. The procedure relies on the production of CN− ion beam with a SNICS source starting from several appropriate substrates containing CN− triple bond. Several of...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2012-10, Vol.689, p.98-101
Main Authors: Di Leva, A., Pezzella, A., De Cesare, N., D'Onofrio, A., Gialanella, L., Romano, M., Romoli, M., Schuermann, D., Terrasi, F., Imbriani, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report here on the direct generation of a CN− ion beam for the production of a N ion beam to be used in nuclear astrophysics measurements. The procedure relies on the production of CN− ion beam with a SNICS source starting from several appropriate substrates containing CN− triple bond. Several of the investigated substrates showed a higher beam intensity with respect to the common N beam production from a cathode of BN plus graphite. Best results in terms of analyzed beam intensity were observed with K3Fe(CN)6 and KSCN cathodes. Use of the latter compound is particularly appealing because of the easy availability of mass-15 enriched molecule.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2012.06.037