Loading…

Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study

We report a kinetic Monte Carlo (kMC) investigation of an atomistic model for 3-dimensional structural configurations of TiO2 memristor, focusing on the oxygen vacancy migration and interaction under an external voltage bias. kMC allows the access of experimental time scales so that the formation of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2012-10, Vol.112 (7)
Main Authors: Li, Duo, Li, Maozhi, Zahid, Ferdows, Wang, Jian, Guo, Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c258t-fc737c90ad8ac3e12e4baf44985aac87f5ed01073c98f36ef11877ab577745fa3
cites cdi_FETCH-LOGICAL-c258t-fc737c90ad8ac3e12e4baf44985aac87f5ed01073c98f36ef11877ab577745fa3
container_end_page
container_issue 7
container_start_page
container_title Journal of applied physics
container_volume 112
creator Li, Duo
Li, Maozhi
Zahid, Ferdows
Wang, Jian
Guo, Hong
description We report a kinetic Monte Carlo (kMC) investigation of an atomistic model for 3-dimensional structural configurations of TiO2 memristor, focusing on the oxygen vacancy migration and interaction under an external voltage bias. kMC allows the access of experimental time scales so that the formation of well defined vacancy filaments in thin TiO2 films can be simulated. The results show that the electric field drives vacancy migration; and vacancy hopping-induced localized electric field plays a key role for the filament evolution. Using the kMC structure of the filaments at different stages of the formation process, electronic density of states (DOS) are calculated by density functional theory. Filament induced gap states are found which gives rise to a transition from insulating behavior to conducting behavior during the filament formation process. By varying kMC simulations parameters, relations between vacancy diffusion, filament formation, and DOS in the TiO2 thin film are elucidated.
doi_str_mv 10.1063/1.4757584
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671399556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671399556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-fc737c90ad8ac3e12e4baf44985aac87f5ed01073c98f36ef11877ab577745fa3</originalsourceid><addsrcrecordid>eNotkMFOAyEURYnRxFpd-AcsdTEVhmEAd01j1aRmNnVNXikYdAYqUOP8vTXt6m5Obk4OQreUzChp2QOdNYILLpszNKFEqkpwTs7RhJCaVlIJdYmucv4khFLJ1AQtu9_xwwb8AwaCGbHzPQw2FOxiGqD4GLAPeO27-hHP8ZcPtniD32IoFi8g9RHnst-O1-jCQZ_tzWmn6H35tF68VKvu-XUxX1Wm5rJUzggmjCKwlWCYpbVtNuCaRkkOYKRw3G4JJYIZJR1rrTtYCgEbLoRouAM2RXfH312K33ubix58NrbvIdi4z5q2gjKlOG8P6P0RNSnmnKzTu-QHSKOmRP-30lSfWrE_Iftapw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671399556</pqid></control><display><type>article</type><title>Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Li, Duo ; Li, Maozhi ; Zahid, Ferdows ; Wang, Jian ; Guo, Hong</creator><creatorcontrib>Li, Duo ; Li, Maozhi ; Zahid, Ferdows ; Wang, Jian ; Guo, Hong</creatorcontrib><description>We report a kinetic Monte Carlo (kMC) investigation of an atomistic model for 3-dimensional structural configurations of TiO2 memristor, focusing on the oxygen vacancy migration and interaction under an external voltage bias. kMC allows the access of experimental time scales so that the formation of well defined vacancy filaments in thin TiO2 films can be simulated. The results show that the electric field drives vacancy migration; and vacancy hopping-induced localized electric field plays a key role for the filament evolution. Using the kMC structure of the filaments at different stages of the formation process, electronic density of states (DOS) are calculated by density functional theory. Filament induced gap states are found which gives rise to a transition from insulating behavior to conducting behavior during the filament formation process. By varying kMC simulations parameters, relations between vacancy diffusion, filament formation, and DOS in the TiO2 thin film are elucidated.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4757584</identifier><language>eng</language><subject>Computer simulation ; Density of states ; Electric fields ; Filaments ; Mathematical models ; Monte Carlo methods ; Thin films ; Titanium dioxide</subject><ispartof>Journal of applied physics, 2012-10, Vol.112 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-fc737c90ad8ac3e12e4baf44985aac87f5ed01073c98f36ef11877ab577745fa3</citedby><cites>FETCH-LOGICAL-c258t-fc737c90ad8ac3e12e4baf44985aac87f5ed01073c98f36ef11877ab577745fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Duo</creatorcontrib><creatorcontrib>Li, Maozhi</creatorcontrib><creatorcontrib>Zahid, Ferdows</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Guo, Hong</creatorcontrib><title>Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study</title><title>Journal of applied physics</title><description>We report a kinetic Monte Carlo (kMC) investigation of an atomistic model for 3-dimensional structural configurations of TiO2 memristor, focusing on the oxygen vacancy migration and interaction under an external voltage bias. kMC allows the access of experimental time scales so that the formation of well defined vacancy filaments in thin TiO2 films can be simulated. The results show that the electric field drives vacancy migration; and vacancy hopping-induced localized electric field plays a key role for the filament evolution. Using the kMC structure of the filaments at different stages of the formation process, electronic density of states (DOS) are calculated by density functional theory. Filament induced gap states are found which gives rise to a transition from insulating behavior to conducting behavior during the filament formation process. By varying kMC simulations parameters, relations between vacancy diffusion, filament formation, and DOS in the TiO2 thin film are elucidated.</description><subject>Computer simulation</subject><subject>Density of states</subject><subject>Electric fields</subject><subject>Filaments</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkMFOAyEURYnRxFpd-AcsdTEVhmEAd01j1aRmNnVNXikYdAYqUOP8vTXt6m5Obk4OQreUzChp2QOdNYILLpszNKFEqkpwTs7RhJCaVlIJdYmucv4khFLJ1AQtu9_xwwb8AwaCGbHzPQw2FOxiGqD4GLAPeO27-hHP8ZcPtniD32IoFi8g9RHnst-O1-jCQZ_tzWmn6H35tF68VKvu-XUxX1Wm5rJUzggmjCKwlWCYpbVtNuCaRkkOYKRw3G4JJYIZJR1rrTtYCgEbLoRouAM2RXfH312K33ubix58NrbvIdi4z5q2gjKlOG8P6P0RNSnmnKzTu-QHSKOmRP-30lSfWrE_Iftapw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Li, Duo</creator><creator>Li, Maozhi</creator><creator>Zahid, Ferdows</creator><creator>Wang, Jian</creator><creator>Guo, Hong</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20121001</creationdate><title>Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study</title><author>Li, Duo ; Li, Maozhi ; Zahid, Ferdows ; Wang, Jian ; Guo, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-fc737c90ad8ac3e12e4baf44985aac87f5ed01073c98f36ef11877ab577745fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer simulation</topic><topic>Density of states</topic><topic>Electric fields</topic><topic>Filaments</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Duo</creatorcontrib><creatorcontrib>Li, Maozhi</creatorcontrib><creatorcontrib>Zahid, Ferdows</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Guo, Hong</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Duo</au><au>Li, Maozhi</au><au>Zahid, Ferdows</au><au>Wang, Jian</au><au>Guo, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study</atitle><jtitle>Journal of applied physics</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>112</volume><issue>7</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>We report a kinetic Monte Carlo (kMC) investigation of an atomistic model for 3-dimensional structural configurations of TiO2 memristor, focusing on the oxygen vacancy migration and interaction under an external voltage bias. kMC allows the access of experimental time scales so that the formation of well defined vacancy filaments in thin TiO2 films can be simulated. The results show that the electric field drives vacancy migration; and vacancy hopping-induced localized electric field plays a key role for the filament evolution. Using the kMC structure of the filaments at different stages of the formation process, electronic density of states (DOS) are calculated by density functional theory. Filament induced gap states are found which gives rise to a transition from insulating behavior to conducting behavior during the filament formation process. By varying kMC simulations parameters, relations between vacancy diffusion, filament formation, and DOS in the TiO2 thin film are elucidated.</abstract><doi>10.1063/1.4757584</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2012-10, Vol.112 (7)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_1671399556
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Computer simulation
Density of states
Electric fields
Filaments
Mathematical models
Monte Carlo methods
Thin films
Titanium dioxide
title Oxygen vacancy filament formation in TiO2: A kinetic Monte Carlo study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20vacancy%20filament%20formation%20in%20TiO2:%20A%20kinetic%20Monte%20Carlo%20study&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Li,%20Duo&rft.date=2012-10-01&rft.volume=112&rft.issue=7&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4757584&rft_dat=%3Cproquest_cross%3E1671399556%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-fc737c90ad8ac3e12e4baf44985aac87f5ed01073c98f36ef11877ab577745fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671399556&rft_id=info:pmid/&rfr_iscdi=true