Loading…

Superomniphobic surfaces: Design and durability

Surfaces that display liquid contact angles greater than 150° along with low contact angle hysteresis for liquids with both high and low surface tension values are known as superomniphobic surfaces. Such surfaces are of interest for a diverse array of applications, including self-cleaning surfaces,...

Full description

Saved in:
Bibliographic Details
Published in:MRS bulletin 2013-05, Vol.38 (5), p.383-390
Main Authors: Kota, Arun K., Choi, Wonjae, Tuteja, Anish
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surfaces that display liquid contact angles greater than 150° along with low contact angle hysteresis for liquids with both high and low surface tension values are known as superomniphobic surfaces. Such surfaces are of interest for a diverse array of applications, including self-cleaning surfaces, nonfouling surfaces, stain-free clothing, spill-resistant protective wear, drag reduction, and fingerprint-resistant surfaces. Recently, significant advances have been made in understanding the criteria required to design superomniphobic surfaces. In this article, we discuss the roles of surface energy, roughness, re-entrant texture, and hierarchical structure in fabricating superomniphobic surfaces. We also provide a review of different superomniphobic surfaces reported recently in the literature and emphasize the need for mechanical, chemical, and radiation durability of superomniphobic surfaces for practical applications. Finally, we conclude with a discussion of the unresolved challenges in developing durable superomniphobic surfaces that define the scope for further improvements in the field.
ISSN:0883-7694
1938-1425
DOI:10.1557/mrs.2013.101