Loading…

Analytical solutions for channel flows of Phan-Thien–Tanner and Giesekus fluids under slip

► Analytical and semi-analytical solutions for generalized Newtonian fluids with wall slip. ► The stress models are the Power Law, Bingham, Herschel-Bulkley, Sisko and Robertson-Stiff. ► Four slip models are studied: linear and nonlinear Navier, Hatzikriakos and asymptotic. ► The existence and uniqu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of non-Newtonian fluid mechanics 2012-03, Vol.171-172, p.97-105
Main Authors: Ferrás, Luis L., Nóbrega, João M., Pinho, Fernando T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-7d55948f578cc6ba6d338c11cb23f8a2730a07b3992b916a0d22d3ca411a11de3
cites cdi_FETCH-LOGICAL-c363t-7d55948f578cc6ba6d338c11cb23f8a2730a07b3992b916a0d22d3ca411a11de3
container_end_page 105
container_issue
container_start_page 97
container_title Journal of non-Newtonian fluid mechanics
container_volume 171-172
creator Ferrás, Luis L.
Nóbrega, João M.
Pinho, Fernando T.
description ► Analytical and semi-analytical solutions for generalized Newtonian fluids with wall slip. ► The stress models are the Power Law, Bingham, Herschel-Bulkley, Sisko and Robertson-Stiff. ► Four slip models are studied: linear and nonlinear Navier, Hatzikriakos and asymptotic. ► The existence and uniqueness of solutions for the nonlinear slip models are proved. Analytical and semi-analytical solutions are presented for the cases of channel and pipe flows with wall slip for viscoelastic fluids described by the simplified PTT (using both the exponential and the linearized kernel) and the Giesekus models. The slip laws used are the linear and nonlinear Navier, the Hatzikiriakos and the asymptotic models. For the nonlinear Navier slip only natural numbers can be used for the exponent of the tangent stress in order to obtain analytical solutions. For other values of the exponent and other nonlinear laws a numerical scheme is required, and thus, the solution is semi-analytical. For these cases the intervals containing the solution and the corresponding proof for the existence and uniqueness are also presented. For the Giesekus model the influence of the wall slip on the restrictions of the slip models is also investigated.
doi_str_mv 10.1016/j.jnnfm.2012.01.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671409336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377025712000109</els_id><sourcerecordid>1671409336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7d55948f578cc6ba6d338c11cb23f8a2730a07b3992b916a0d22d3ca411a11de3</originalsourceid><addsrcrecordid>eNp9kL1OwzAQgC0EEqXwBCweWRJ8dhMnA0NV8SchwVA2JMu1HdXFtYudgLrxDrwhT4JLmbnlpLv77nQfQudASiBQX67KlffduqQEaEmgJKQ9QCNoOCtozeAQjQjjvCC04sfoJKUVyVGxeoRepl66bW-VdDgFN_Q2-IS7ELFaSu-Nw50LHwmHDj_lQjFfWuO_P7_mu2bE0mt8a00yr0Om3GB1woPXuZOc3Zyio066ZM7-8hg931zPZ3fFw-Pt_Wz6UChWs77guqraSdNVvFGqXshaM9YoALWgrGsk5YxIwhesbemihVoSTalmSk4AJIA2bIwu9ns3MbwNJvVibZMyzklvwpAE1BwmpGX52hix_aiKIaVoOrGJdi3jVgARO5diJX5dip1LQUBkl5m62lMmf_FuTRRJZQ_KaBuN6oUO9l_-B6ySf3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671409336</pqid></control><display><type>article</type><title>Analytical solutions for channel flows of Phan-Thien–Tanner and Giesekus fluids under slip</title><source>Elsevier</source><creator>Ferrás, Luis L. ; Nóbrega, João M. ; Pinho, Fernando T.</creator><creatorcontrib>Ferrás, Luis L. ; Nóbrega, João M. ; Pinho, Fernando T.</creatorcontrib><description>► Analytical and semi-analytical solutions for generalized Newtonian fluids with wall slip. ► The stress models are the Power Law, Bingham, Herschel-Bulkley, Sisko and Robertson-Stiff. ► Four slip models are studied: linear and nonlinear Navier, Hatzikriakos and asymptotic. ► The existence and uniqueness of solutions for the nonlinear slip models are proved. Analytical and semi-analytical solutions are presented for the cases of channel and pipe flows with wall slip for viscoelastic fluids described by the simplified PTT (using both the exponential and the linearized kernel) and the Giesekus models. The slip laws used are the linear and nonlinear Navier, the Hatzikiriakos and the asymptotic models. For the nonlinear Navier slip only natural numbers can be used for the exponent of the tangent stress in order to obtain analytical solutions. For other values of the exponent and other nonlinear laws a numerical scheme is required, and thus, the solution is semi-analytical. For these cases the intervals containing the solution and the corresponding proof for the existence and uniqueness are also presented. For the Giesekus model the influence of the wall slip on the restrictions of the slip models is also investigated.</description><identifier>ISSN: 0377-0257</identifier><identifier>EISSN: 1873-2631</identifier><identifier>DOI: 10.1016/j.jnnfm.2012.01.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Analytical solution ; Computational fluid dynamics ; Fluid flow ; Giesekus model ; Laws ; Mathematical analysis ; Mathematical models ; Nonlinearity ; PTT model ; Slip ; Viscoelastic fluids ; Wall slip</subject><ispartof>Journal of non-Newtonian fluid mechanics, 2012-03, Vol.171-172, p.97-105</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7d55948f578cc6ba6d338c11cb23f8a2730a07b3992b916a0d22d3ca411a11de3</citedby><cites>FETCH-LOGICAL-c363t-7d55948f578cc6ba6d338c11cb23f8a2730a07b3992b916a0d22d3ca411a11de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ferrás, Luis L.</creatorcontrib><creatorcontrib>Nóbrega, João M.</creatorcontrib><creatorcontrib>Pinho, Fernando T.</creatorcontrib><title>Analytical solutions for channel flows of Phan-Thien–Tanner and Giesekus fluids under slip</title><title>Journal of non-Newtonian fluid mechanics</title><description>► Analytical and semi-analytical solutions for generalized Newtonian fluids with wall slip. ► The stress models are the Power Law, Bingham, Herschel-Bulkley, Sisko and Robertson-Stiff. ► Four slip models are studied: linear and nonlinear Navier, Hatzikriakos and asymptotic. ► The existence and uniqueness of solutions for the nonlinear slip models are proved. Analytical and semi-analytical solutions are presented for the cases of channel and pipe flows with wall slip for viscoelastic fluids described by the simplified PTT (using both the exponential and the linearized kernel) and the Giesekus models. The slip laws used are the linear and nonlinear Navier, the Hatzikiriakos and the asymptotic models. For the nonlinear Navier slip only natural numbers can be used for the exponent of the tangent stress in order to obtain analytical solutions. For other values of the exponent and other nonlinear laws a numerical scheme is required, and thus, the solution is semi-analytical. For these cases the intervals containing the solution and the corresponding proof for the existence and uniqueness are also presented. For the Giesekus model the influence of the wall slip on the restrictions of the slip models is also investigated.</description><subject>Analytical solution</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Giesekus model</subject><subject>Laws</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>PTT model</subject><subject>Slip</subject><subject>Viscoelastic fluids</subject><subject>Wall slip</subject><issn>0377-0257</issn><issn>1873-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQgC0EEqXwBCweWRJ8dhMnA0NV8SchwVA2JMu1HdXFtYudgLrxDrwhT4JLmbnlpLv77nQfQudASiBQX67KlffduqQEaEmgJKQ9QCNoOCtozeAQjQjjvCC04sfoJKUVyVGxeoRepl66bW-VdDgFN_Q2-IS7ELFaSu-Nw50LHwmHDj_lQjFfWuO_P7_mu2bE0mt8a00yr0Om3GB1woPXuZOc3Zyio066ZM7-8hg931zPZ3fFw-Pt_Wz6UChWs77guqraSdNVvFGqXshaM9YoALWgrGsk5YxIwhesbemihVoSTalmSk4AJIA2bIwu9ns3MbwNJvVibZMyzklvwpAE1BwmpGX52hix_aiKIaVoOrGJdi3jVgARO5diJX5dip1LQUBkl5m62lMmf_FuTRRJZQ_KaBuN6oUO9l_-B6ySf3k</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Ferrás, Luis L.</creator><creator>Nóbrega, João M.</creator><creator>Pinho, Fernando T.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20120301</creationdate><title>Analytical solutions for channel flows of Phan-Thien–Tanner and Giesekus fluids under slip</title><author>Ferrás, Luis L. ; Nóbrega, João M. ; Pinho, Fernando T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7d55948f578cc6ba6d338c11cb23f8a2730a07b3992b916a0d22d3ca411a11de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical solution</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Giesekus model</topic><topic>Laws</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>PTT model</topic><topic>Slip</topic><topic>Viscoelastic fluids</topic><topic>Wall slip</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrás, Luis L.</creatorcontrib><creatorcontrib>Nóbrega, João M.</creatorcontrib><creatorcontrib>Pinho, Fernando T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of non-Newtonian fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrás, Luis L.</au><au>Nóbrega, João M.</au><au>Pinho, Fernando T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical solutions for channel flows of Phan-Thien–Tanner and Giesekus fluids under slip</atitle><jtitle>Journal of non-Newtonian fluid mechanics</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>171-172</volume><spage>97</spage><epage>105</epage><pages>97-105</pages><issn>0377-0257</issn><eissn>1873-2631</eissn><abstract>► Analytical and semi-analytical solutions for generalized Newtonian fluids with wall slip. ► The stress models are the Power Law, Bingham, Herschel-Bulkley, Sisko and Robertson-Stiff. ► Four slip models are studied: linear and nonlinear Navier, Hatzikriakos and asymptotic. ► The existence and uniqueness of solutions for the nonlinear slip models are proved. Analytical and semi-analytical solutions are presented for the cases of channel and pipe flows with wall slip for viscoelastic fluids described by the simplified PTT (using both the exponential and the linearized kernel) and the Giesekus models. The slip laws used are the linear and nonlinear Navier, the Hatzikiriakos and the asymptotic models. For the nonlinear Navier slip only natural numbers can be used for the exponent of the tangent stress in order to obtain analytical solutions. For other values of the exponent and other nonlinear laws a numerical scheme is required, and thus, the solution is semi-analytical. For these cases the intervals containing the solution and the corresponding proof for the existence and uniqueness are also presented. For the Giesekus model the influence of the wall slip on the restrictions of the slip models is also investigated.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnnfm.2012.01.009</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0257
ispartof Journal of non-Newtonian fluid mechanics, 2012-03, Vol.171-172, p.97-105
issn 0377-0257
1873-2631
language eng
recordid cdi_proquest_miscellaneous_1671409336
source Elsevier
subjects Analytical solution
Computational fluid dynamics
Fluid flow
Giesekus model
Laws
Mathematical analysis
Mathematical models
Nonlinearity
PTT model
Slip
Viscoelastic fluids
Wall slip
title Analytical solutions for channel flows of Phan-Thien–Tanner and Giesekus fluids under slip
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20solutions%20for%20channel%20flows%20of%20Phan-Thien%E2%80%93Tanner%20and%20Giesekus%20fluids%20under%20slip&rft.jtitle=Journal%20of%20non-Newtonian%20fluid%20mechanics&rft.au=Ferr%C3%A1s,%20Luis%20L.&rft.date=2012-03-01&rft.volume=171-172&rft.spage=97&rft.epage=105&rft.pages=97-105&rft.issn=0377-0257&rft.eissn=1873-2631&rft_id=info:doi/10.1016/j.jnnfm.2012.01.009&rft_dat=%3Cproquest_cross%3E1671409336%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-7d55948f578cc6ba6d338c11cb23f8a2730a07b3992b916a0d22d3ca411a11de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671409336&rft_id=info:pmid/&rfr_iscdi=true