Loading…

Electrical Characterization of Polyethylene oxide -Alumina composite

This study deals with the electrical characterization of polyethylene oxide (PEO) – alumina (Al2O3) composites at several concentrations, 0%, 5%, 10%, and 15% by weight Al2O3. The alternating current electrical properties were studied as a function of frequency in the range from 20 Hz to 1 MHz and s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermoplastic composite materials 2013-03, Vol.26 (2), p.176-192
Main Authors: Elimat, ZM, Zihlif, AM, Schulte, Kl, de la Vega, A, Ragosta, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study deals with the electrical characterization of polyethylene oxide (PEO) – alumina (Al2O3) composites at several concentrations, 0%, 5%, 10%, and 15% by weight Al2O3. The alternating current electrical properties were studied as a function of frequency in the range from 20 Hz to 1 MHz and studied with filler concentrations. Transmission light microscopy (TLM) and scanning electron microscopy (SEM) revealed that the dispersed Al2O3 particles were randomly distributed within the PEO matrix with some surface contacts between them and also revealed that the ceramic particles are tightly held by the host matrix material. The melting temperature, Tm, was determined for the composites via differential scanning calorimetry (DSC). The AC electrical properties (impedance, real part of impedance, imaginary part of impedance, dissipation factor, dielectric constant, real part of electric modulus, imaginary part of electric modulus, electrical conductivity, and relaxation time) were determined. It was found that the applied frequency and filler concentrations affected the AC electrical properties of the composites. The universal power-law of alternating current conductivity wasobserved in the PEO/Al2O3 composites. The calculated power exponent (n 
ISSN:0892-7057
1530-7980
DOI:10.1177/0892705711419879