Loading…

Spin clocks: Probing fundamental symmetries in nature

The detection of the free precession of co‐located 3He/129Xe nuclear spins (clock comparison) is used as ultra‐sensitive probe for non‐magnetic spin interactions, since the magnetic dipole interaction (Zeeman‐term) drops out in the weighted frequency difference, i.e., Δω = ωHe‐ γHe/γXe·ωXe of the re...

Full description

Saved in:
Bibliographic Details
Published in:Annalen der Physik 2013-09, Vol.525 (8-9), p.539-549
Main Authors: Heil, Werner, Gemmel, Claudia, Karpuk, Sergei, Sobolev, Yuri, Tullney, Kathlynne, Allmendinger, Fabian, Schmidt, Ulrich, Burghoff, Martin, Kilian, Wolfgang, Knappe-Grüneberg, Silvia, Schnabel, Allard, Seifert, Frank, Trahms, Lutz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The detection of the free precession of co‐located 3He/129Xe nuclear spins (clock comparison) is used as ultra‐sensitive probe for non‐magnetic spin interactions, since the magnetic dipole interaction (Zeeman‐term) drops out in the weighted frequency difference, i.e., Δω = ωHe‐ γHe/γXe·ωXe of the respective Larmor frequencies. Recent results are reported on searches for (i) short‐range P‐ and T‐violating interactions between nucleons, and (ii) Lorentz violating signatures by monitoring the Larmor frequencies as the laboratory reference frame rotates with respect to distant stars (sidereal modulation). Finally, a new experimental initiative to search for an electric dipole moment of 129Xe (CP‐violation) is discussed, which strongly benefits from the long spin‐coherence times obtained, reaching T2,He*> 100 h and T2,Xe*> 8 h in case of 3He and 129Xe, respectively. The detection of the free precession of co‐located 3He/129Xe nuclear spins (clock comparison) is used as ultra‐sensitive probe for non‐magnetic spin interactions, since the magnetic dipole interaction (Zeeman‐term) drops out in the weighted frequency difference, i.e., Δω = ωHe‐ γHe/γXe·ωXe of the respective Larmor frequencies. Recent results are reported on searches for (i) short‐range P‐ and T‐violating interactions between nucleons, and (ii) Lorentz violating signatures by monitoring the Larmor frequencies as the laboratory reference frame rotates with respect to distant stars (sidereal modulation). Finally, a new experimental initiative to search for an electric dipole moment of 129Xe (CP‐violation) is discussed, which strongly benefits from the long spin‐coherence times obtained, reaching T*2,He> 100 h and T*2,Xe> 8 h in case of 3He and 129Xe, respectively.
ISSN:0003-3804
1521-3889
DOI:10.1002/andp.201300048