Loading…

Non-intrusive speech quality assessment using several combinations of auditory features

Quality estimation of speech is essential for monitoring and maintenance of the quality of service at different nodes of modern telecommunication networks. It is also required in the selection of codecs in speech communication systems. There is no requirement of the original clean speech signal as a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of speech technology 2013-03, Vol.16 (1), p.89-101
Main Authors: Dubey, Rajesh Kumar, Kumar, Arun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quality estimation of speech is essential for monitoring and maintenance of the quality of service at different nodes of modern telecommunication networks. It is also required in the selection of codecs in speech communication systems. There is no requirement of the original clean speech signal as a reference in non-intrusive speech quality evaluation, and thus it is of importance in evaluating the quality of speech at any node of the communication network. In this paper, non-intrusive speech quality assessment of narrowband speech is done by Gaussian Mixture Model (GMM) training using several combinations of auditory perception and speech production features, which include principal components of Lyon’s auditory model features, MFCC, LSF and their first and second differences. Results are obtained and compared for several combinations of auditory features for three sets of databases. The results are also compared with ITU-T Recommendation P.563 for non-intrusive speech quality assessment. It is found that many combinations of these feature sets outperform the ITU-T P.563 Recommendation under the test conditions.
ISSN:1381-2416
1572-8110
DOI:10.1007/s10772-012-9162-4