Loading…
Short time dynamics of viscous drop spreading
Liquid drops start spreading directly after coming into contact with a solid substrate. Although this phenomenon involves a three-phase contact line, the spreading motion can be very fast. We experimentally study the initial spreading dynamics, characterized by the radius of the wetted area, for vis...
Saved in:
Published in: | Physics of fluids (1994) 2013-01, Vol.25 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Liquid drops start spreading directly after coming into contact with a solid substrate. Although this phenomenon involves a three-phase contact line, the spreading motion can be very fast. We experimentally study the initial spreading dynamics, characterized by the radius of the wetted area, for viscous drops. Using high-speed imaging with synchronized bottom and side views gives access to 6 decades of time resolution. We show that short time spreading does not exhibit a pure power-law growth. Instead, we find a spreading velocity that decreases logarithmically in time, with a dynamics identical to that of coalescing viscous drops. Remarkably, the contact line dissipation and wetting effects turn out to be unimportant during the initial stages of drop spreading. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.4788693 |