Loading…
A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection
► This paper expands the use of Hidden Markov Model theory in reliability and maintenance field. ► We combine an optimization model using Markov chain with input parameters estimation from empirical data. ► We explore the problem of how to estimate the model input parameters and then adequate them t...
Saved in:
Published in: | Computers & industrial engineering 2011-10, Vol.61 (3), p.503-511 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-1f42295b21d79bffec9b2a049b32a6685740442678c185d77de6e4c2527e1c2f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-1f42295b21d79bffec9b2a049b32a6685740442678c185d77de6e4c2527e1c2f3 |
container_end_page | 511 |
container_issue | 3 |
container_start_page | 503 |
container_title | Computers & industrial engineering |
container_volume | 61 |
creator | Neves, Maxstaley L. Santiago, Leonardo P. Maia, Carlos A. |
description | ► This paper expands the use of Hidden Markov Model theory in reliability and maintenance field. ► We combine an optimization model using Markov chain with input parameters estimation from empirical data. ► We explore the problem of how to estimate the model input parameters and then adequate them to the empirical data available. ► The main result of this paper is a framework that combines optimization and model parameter computation from historical data.
This paper combines an optimization model and input parameters estimation from empirical data, in order to propose condition-based maintenance policies. The system deterioration is described by discrete states ordered from the state “as good as new” to the state “completely failed”. At each periodic inspection, whose outcome might not be accurate, a decision has to be made between continuing to operate the system or stopping and performing its preventive maintenance. We explore the problem of how to estimate the model input parameters, i.e., how to adequate the model inputs to the empirical data available. For this purpose, we use the Hidden Markov Model theory. The literature has not explored the combination of optimization techniques and model input parameters, through historical data, for problems with imperfect information such as the one considered in this paper. We thoroughly discuss our approach, illustrate it with empirical data and also point out directions for future research. |
doi_str_mv | 10.1016/j.cie.2011.04.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671433884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835211001069</els_id><sourcerecordid>1671433884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-1f42295b21d79bffec9b2a049b32a6685740442678c185d77de6e4c2527e1c2f3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQha2KSl3a_gBuFicuCWPHjh1xqipokSpxoWfLsSfIq40d7ASx_x5Hy4kDp5FmvjeaeY-QdwxaBqz_eGxdwJYDYy2IFkBekQPTamhASnhDDtD10OhO8hvytpQjAAg5sAP5_UBdij6sIcVmtAU9nW2IK0YbHdIlnYI7Uxs9DXHZVrrYbGdcMReKZQ2z3YV0Spn6vRtSrp34g5ZzWXEudIseM132iQ-uLikLul1zR64neyp4_7fektcvn78_Pjcv356-Pj68NE4ArA2bBOeDHDnzahinCd0wcgtiGDtu-15LJUAI3ivtmJZeKY89CsclV8gcn7pb8uGyd8np51ZvNnMoDk8nGzFtxbBeMdF1WouKvv8HPaYtx3qd0YMSWgwdqxC7QC6nUjJOZsnVhnw2DMwehTmaGoXZozAgTI2iaj5dNFgf_RUwm1KR6q8PubphfAr_Uf8BWTmTCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>897484931</pqid></control><display><type>article</type><title>A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection</title><source>Elsevier</source><creator>Neves, Maxstaley L. ; Santiago, Leonardo P. ; Maia, Carlos A.</creator><creatorcontrib>Neves, Maxstaley L. ; Santiago, Leonardo P. ; Maia, Carlos A.</creatorcontrib><description>► This paper expands the use of Hidden Markov Model theory in reliability and maintenance field. ► We combine an optimization model using Markov chain with input parameters estimation from empirical data. ► We explore the problem of how to estimate the model input parameters and then adequate them to the empirical data available. ► The main result of this paper is a framework that combines optimization and model parameter computation from historical data.
This paper combines an optimization model and input parameters estimation from empirical data, in order to propose condition-based maintenance policies. The system deterioration is described by discrete states ordered from the state “as good as new” to the state “completely failed”. At each periodic inspection, whose outcome might not be accurate, a decision has to be made between continuing to operate the system or stopping and performing its preventive maintenance. We explore the problem of how to estimate the model input parameters, i.e., how to adequate the model inputs to the empirical data available. For this purpose, we use the Hidden Markov Model theory. The literature has not explored the combination of optimization techniques and model input parameters, through historical data, for problems with imperfect information such as the one considered in this paper. We thoroughly discuss our approach, illustrate it with empirical data and also point out directions for future research.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2011.04.005</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Condition-based maintenance ; Decision-making under uncertainty ; Deterioration ; Empirical analysis ; Hidden Markov Models ; Inspection ; Inspections ; Maintenance ; Mathematical models ; Optimal control ; Optimization ; Optimization techniques ; Parameter estimation ; Policies ; Preventive maintenance ; Stochastic-dynamic programming ; Studies</subject><ispartof>Computers & industrial engineering, 2011-10, Vol.61 (3), p.503-511</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Oct 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-1f42295b21d79bffec9b2a049b32a6685740442678c185d77de6e4c2527e1c2f3</citedby><cites>FETCH-LOGICAL-c400t-1f42295b21d79bffec9b2a049b32a6685740442678c185d77de6e4c2527e1c2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Neves, Maxstaley L.</creatorcontrib><creatorcontrib>Santiago, Leonardo P.</creatorcontrib><creatorcontrib>Maia, Carlos A.</creatorcontrib><title>A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection</title><title>Computers & industrial engineering</title><description>► This paper expands the use of Hidden Markov Model theory in reliability and maintenance field. ► We combine an optimization model using Markov chain with input parameters estimation from empirical data. ► We explore the problem of how to estimate the model input parameters and then adequate them to the empirical data available. ► The main result of this paper is a framework that combines optimization and model parameter computation from historical data.
This paper combines an optimization model and input parameters estimation from empirical data, in order to propose condition-based maintenance policies. The system deterioration is described by discrete states ordered from the state “as good as new” to the state “completely failed”. At each periodic inspection, whose outcome might not be accurate, a decision has to be made between continuing to operate the system or stopping and performing its preventive maintenance. We explore the problem of how to estimate the model input parameters, i.e., how to adequate the model inputs to the empirical data available. For this purpose, we use the Hidden Markov Model theory. The literature has not explored the combination of optimization techniques and model input parameters, through historical data, for problems with imperfect information such as the one considered in this paper. We thoroughly discuss our approach, illustrate it with empirical data and also point out directions for future research.</description><subject>Condition-based maintenance</subject><subject>Decision-making under uncertainty</subject><subject>Deterioration</subject><subject>Empirical analysis</subject><subject>Hidden Markov Models</subject><subject>Inspection</subject><subject>Inspections</subject><subject>Maintenance</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameter estimation</subject><subject>Policies</subject><subject>Preventive maintenance</subject><subject>Stochastic-dynamic programming</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQha2KSl3a_gBuFicuCWPHjh1xqipokSpxoWfLsSfIq40d7ASx_x5Hy4kDp5FmvjeaeY-QdwxaBqz_eGxdwJYDYy2IFkBekQPTamhASnhDDtD10OhO8hvytpQjAAg5sAP5_UBdij6sIcVmtAU9nW2IK0YbHdIlnYI7Uxs9DXHZVrrYbGdcMReKZQ2z3YV0Spn6vRtSrp34g5ZzWXEudIseM132iQ-uLikLul1zR64neyp4_7fektcvn78_Pjcv356-Pj68NE4ArA2bBOeDHDnzahinCd0wcgtiGDtu-15LJUAI3ivtmJZeKY89CsclV8gcn7pb8uGyd8np51ZvNnMoDk8nGzFtxbBeMdF1WouKvv8HPaYtx3qd0YMSWgwdqxC7QC6nUjJOZsnVhnw2DMwehTmaGoXZozAgTI2iaj5dNFgf_RUwm1KR6q8PubphfAr_Uf8BWTmTCg</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Neves, Maxstaley L.</creator><creator>Santiago, Leonardo P.</creator><creator>Maia, Carlos A.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111001</creationdate><title>A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection</title><author>Neves, Maxstaley L. ; Santiago, Leonardo P. ; Maia, Carlos A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-1f42295b21d79bffec9b2a049b32a6685740442678c185d77de6e4c2527e1c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Condition-based maintenance</topic><topic>Decision-making under uncertainty</topic><topic>Deterioration</topic><topic>Empirical analysis</topic><topic>Hidden Markov Models</topic><topic>Inspection</topic><topic>Inspections</topic><topic>Maintenance</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameter estimation</topic><topic>Policies</topic><topic>Preventive maintenance</topic><topic>Stochastic-dynamic programming</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neves, Maxstaley L.</creatorcontrib><creatorcontrib>Santiago, Leonardo P.</creatorcontrib><creatorcontrib>Maia, Carlos A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neves, Maxstaley L.</au><au>Santiago, Leonardo P.</au><au>Maia, Carlos A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection</atitle><jtitle>Computers & industrial engineering</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>61</volume><issue>3</issue><spage>503</spage><epage>511</epage><pages>503-511</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>► This paper expands the use of Hidden Markov Model theory in reliability and maintenance field. ► We combine an optimization model using Markov chain with input parameters estimation from empirical data. ► We explore the problem of how to estimate the model input parameters and then adequate them to the empirical data available. ► The main result of this paper is a framework that combines optimization and model parameter computation from historical data.
This paper combines an optimization model and input parameters estimation from empirical data, in order to propose condition-based maintenance policies. The system deterioration is described by discrete states ordered from the state “as good as new” to the state “completely failed”. At each periodic inspection, whose outcome might not be accurate, a decision has to be made between continuing to operate the system or stopping and performing its preventive maintenance. We explore the problem of how to estimate the model input parameters, i.e., how to adequate the model inputs to the empirical data available. For this purpose, we use the Hidden Markov Model theory. The literature has not explored the combination of optimization techniques and model input parameters, through historical data, for problems with imperfect information such as the one considered in this paper. We thoroughly discuss our approach, illustrate it with empirical data and also point out directions for future research.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2011.04.005</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-8352 |
ispartof | Computers & industrial engineering, 2011-10, Vol.61 (3), p.503-511 |
issn | 0360-8352 1879-0550 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671433884 |
source | Elsevier |
subjects | Condition-based maintenance Decision-making under uncertainty Deterioration Empirical analysis Hidden Markov Models Inspection Inspections Maintenance Mathematical models Optimal control Optimization Optimization techniques Parameter estimation Policies Preventive maintenance Stochastic-dynamic programming Studies |
title | A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20condition-based%20maintenance%20policy%20and%20input%20parameters%20estimation%20for%20deteriorating%20systems%20under%20periodic%20inspection&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Neves,%20Maxstaley%20L.&rft.date=2011-10-01&rft.volume=61&rft.issue=3&rft.spage=503&rft.epage=511&rft.pages=503-511&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2011.04.005&rft_dat=%3Cproquest_cross%3E1671433884%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-1f42295b21d79bffec9b2a049b32a6685740442678c185d77de6e4c2527e1c2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=897484931&rft_id=info:pmid/&rfr_iscdi=true |