Loading…

A Robust Real Time Adaptive Controller Design for Robot Manipulator with Eight-Joints Based on DSPs

In this paper we propose a new technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs (TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mechanical science and technology 2005, Vol.19 (1), p.1-14
Main Authors: SUNG HYUN HAN, HASHIMOTO, Hideki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we propose a new technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs (TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for realtime control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for robot manipulator with eight joints at the joint space and cartesian space.
ISSN:1738-494X
1976-3824
DOI:10.1007/BF02916100