Loading…
On Distribution of Sums of Identically Distributed Random Variables
The proof of one Spitzer lemma on distribution of sums of identically distributed random variables is refined. A new formulation of the lemma contains one additional restriction, which is compared with the initial lemma.
Saved in:
Published in: | Theory of probability and its applications 2013-01, Vol.57 (1), p.132-135 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-dce2b436eced0ca2a5bb77d6f146aabc428be1be3b2aa1ee7e75757089e8d89c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-dce2b436eced0ca2a5bb77d6f146aabc428be1be3b2aa1ee7e75757089e8d89c3 |
container_end_page | 135 |
container_issue | 1 |
container_start_page | 132 |
container_title | Theory of probability and its applications |
container_volume | 57 |
creator | Barseghyan, A G |
description | The proof of one Spitzer lemma on distribution of sums of identically distributed random variables is refined. A new formulation of the lemma contains one additional restriction, which is compared with the initial lemma. |
doi_str_mv | 10.1137/S0040585X97985820 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671438942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1323252479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-dce2b436eced0ca2a5bb77d6f146aabc428be1be3b2aa1ee7e75757089e8d89c3</originalsourceid><addsrcrecordid>eNqF0U1LxDAQBuAgCq6rP8BbwYuXaiZpmuQo69fCwoKr4q3kYwpd-rEm7WH_vS0rCHqQObyHeRgYXkIugd4AcHm7oTSjQokPLbUSitEjMgOqRSoZ6GMym9bptD8lZzFuKaU5AzEji3Wb3FexD5Ud-qprk65MNkMTp1x6bPvKmbre_xj0yYtpfdck7yZUxtYYz8lJaeqIF985J2-PD6-L53S1flou7lap41z3qXfIbMZzdOipM8wIa6X0eQlZbox1GVMWwSK3zBhAlCjFOFRpVF5px-fk-nB3F7rPAWNfNFV0WNemxW6IBeQSMq50xv6nnHEmWCb1SK9-0W03hHZ8ZFSQg9KMwajgoFzoYgxYFrtQNSbsC6DF1EDxpwH-BQqeeGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1316189221</pqid></control><display><type>article</type><title>On Distribution of Sums of Identically Distributed Random Variables</title><source>SIAM Journals Archive</source><source>ABI/INFORM Global</source><creator>Barseghyan, A G</creator><creatorcontrib>Barseghyan, A G</creatorcontrib><description>The proof of one Spitzer lemma on distribution of sums of identically distributed random variables is refined. A new formulation of the lemma contains one additional restriction, which is compared with the initial lemma.</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97985820</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Constrictions ; Formulations ; Harmonic analysis ; Inequality ; Proving ; Random variables ; Sums</subject><ispartof>Theory of probability and its applications, 2013-01, Vol.57 (1), p.132-135</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-dce2b436eced0ca2a5bb77d6f146aabc428be1be3b2aa1ee7e75757089e8d89c3</citedby><cites>FETCH-LOGICAL-c339t-dce2b436eced0ca2a5bb77d6f146aabc428be1be3b2aa1ee7e75757089e8d89c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1316189221?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,3172,11667,27901,27902,36037,36038,44339</link.rule.ids></links><search><creatorcontrib>Barseghyan, A G</creatorcontrib><title>On Distribution of Sums of Identically Distributed Random Variables</title><title>Theory of probability and its applications</title><description>The proof of one Spitzer lemma on distribution of sums of identically distributed random variables is refined. A new formulation of the lemma contains one additional restriction, which is compared with the initial lemma.</description><subject>Constrictions</subject><subject>Formulations</subject><subject>Harmonic analysis</subject><subject>Inequality</subject><subject>Proving</subject><subject>Random variables</subject><subject>Sums</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqF0U1LxDAQBuAgCq6rP8BbwYuXaiZpmuQo69fCwoKr4q3kYwpd-rEm7WH_vS0rCHqQObyHeRgYXkIugd4AcHm7oTSjQokPLbUSitEjMgOqRSoZ6GMym9bptD8lZzFuKaU5AzEji3Wb3FexD5Ud-qprk65MNkMTp1x6bPvKmbre_xj0yYtpfdck7yZUxtYYz8lJaeqIF985J2-PD6-L53S1flou7lap41z3qXfIbMZzdOipM8wIa6X0eQlZbox1GVMWwSK3zBhAlCjFOFRpVF5px-fk-nB3F7rPAWNfNFV0WNemxW6IBeQSMq50xv6nnHEmWCb1SK9-0W03hHZ8ZFSQg9KMwajgoFzoYgxYFrtQNSbsC6DF1EDxpwH-BQqeeGo</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Barseghyan, A G</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>On Distribution of Sums of Identically Distributed Random Variables</title><author>Barseghyan, A G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-dce2b436eced0ca2a5bb77d6f146aabc428be1be3b2aa1ee7e75757089e8d89c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Constrictions</topic><topic>Formulations</topic><topic>Harmonic analysis</topic><topic>Inequality</topic><topic>Proving</topic><topic>Random variables</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barseghyan, A G</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barseghyan, A G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Distribution of Sums of Identically Distributed Random Variables</atitle><jtitle>Theory of probability and its applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>57</volume><issue>1</issue><spage>132</spage><epage>135</epage><pages>132-135</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>The proof of one Spitzer lemma on distribution of sums of identically distributed random variables is refined. A new formulation of the lemma contains one additional restriction, which is compared with the initial lemma.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97985820</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-585X |
ispartof | Theory of probability and its applications, 2013-01, Vol.57 (1), p.132-135 |
issn | 0040-585X 1095-7219 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671438942 |
source | SIAM Journals Archive; ABI/INFORM Global |
subjects | Constrictions Formulations Harmonic analysis Inequality Proving Random variables Sums |
title | On Distribution of Sums of Identically Distributed Random Variables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Distribution%20of%20Sums%20of%20Identically%20Distributed%20Random%20Variables&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Barseghyan,%20A%20G&rft.date=2013-01-01&rft.volume=57&rft.issue=1&rft.spage=132&rft.epage=135&rft.pages=132-135&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97985820&rft_dat=%3Cproquest_cross%3E1323252479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-dce2b436eced0ca2a5bb77d6f146aabc428be1be3b2aa1ee7e75757089e8d89c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1316189221&rft_id=info:pmid/&rfr_iscdi=true |