Loading…
Photonic integrated technology for multi-wavelength laser emission
We summarized the design, fabrication challenges and important technologies for multi-wavelength laser transmitting photonic integration. Technologies discussed include multi-wavelength laser arrays, monolithic integration and modularizing coupling and packaging. Fabrication technique requirements h...
Saved in:
Published in: | Chinese science bulletin 2011-10, Vol.56 (28-29), p.3064-3071 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We summarized the design, fabrication challenges and important technologies for multi-wavelength laser transmitting photonic integration. Technologies discussed include multi-wavelength laser arrays, monolithic integration and modularizing coupling and packaging. Fabrication technique requirements have significantly declined with the rise of reconstruction-equivalent-chirp and second nanoimprint mask technologies. The monolithic integration problem between active and passive waveguides can be overcome with Butt-joint and InP array waveguide grating technologies. The dynamic characteristics of multi-factors will be simultaneously measured with multi-port analyzing modules. The performance of photonic integration chips is significantly improved with the autoecious factors compensation packaging technique. |
---|---|
ISSN: | 1001-6538 1861-9541 |
DOI: | 10.1007/s11434-011-4677-7 |