Loading…

High contrast ion acceleration at intensities exceeding 1021 Wcm−2

Ion acceleration from short pulse laser interactions at intensities of 2×1021Wcm−2 was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2013-05, Vol.20 (5)
Main Authors: Dollar, F., Zulick, C., Matsuoka, T., McGuffey, C., Bulanov, S. S., Chvykov, V., Davis, J., Kalinchenko, G., Petrov, G. M., Willingale, L., Yanovsky, V., Maksimchuk, A., Thomas, A. G. R., Krushelnick, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ion acceleration from short pulse laser interactions at intensities of 2×1021Wcm−2 was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affects the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4803082