Loading…
Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields
ABSTRACT The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on...
Saved in:
Published in: | Fatigue & fracture of engineering materials & structures 2013-01, Vol.36 (1), p.39-55 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33 |
container_end_page | 55 |
container_issue | 1 |
container_start_page | 39 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 36 |
creator | ASKES, H. LIVIERI, P. SUSMEL, L. TAYLOR, D. TOVO, R. |
description | ABSTRACT
The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on the material in the vicinity of the geometrical features being assessed. In other words, the TCD estimates static and high‐cycle fatigue strength of cracked bodies by making use of a critical distance and a reference strength which are assumed to be material constants whose values change as the material microstructural features vary. Similarly, Gradient Mechanics postulates that the relevant stress fields in the vicinity of crack tips have to be determined by directly incorporating into the material constitutive law an intrinsic scale length. The main advantage of such a method is that stress fields become non‐singular also in the presence of cracks and sharp notches. The above idea can be formalized in different ways allowing, under both static and high‐cycle fatigue loading, the static and high‐cycle fatigue assessment of cracked/notched components to be performed without the need for defining the position of the failure locations a priori.
The present paper investigates the existing analogies and differences between the TCD and Gradient Mechanics, the latter formalized according to the so‐called Implicit Gradient Method, when such theories are used to process linear‐elastic crack tip stress fields. |
doi_str_mv | 10.1111/j.1460-2695.2012.01687.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671449547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2837583541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33</originalsourceid><addsrcrecordid>eNqNkc2O0zAUhSMEEmXgHSwhJBYk-Cf-CRILVKZlxABCGhjExrp17Nad1Cl2KtqX4VlxplUXrPDGV77fObbvKQpEcEXyer2uSC1wSUXDK4oJrTARSlb7B8Xk3HhYTJTkopRc_XhcPElpjTNVMzYp_lyFIfqQvEEbGGz00KHOhuWweoVuVraPB9Q7NI1-8Ca33vs0QDA2IQgtmkdovQ0D-mTNCoI36U0-h65f-hPReudstPcKH9A29rlKPixR54OFWNoOUrZGJoK5Q4PfojTEjCDnbdemp8UjB12yz077RfFtdnkz_VBef5lfTd9dl4ZJKkvGRds2oIRoGrfA1nBFCSgs28YAAUFqXjvBWiB1IzG1ctFyJyjmjinFF4xdFC-PvvmFv3Y2DXrjk7FdB8H2u6SJkKSuG17LjD7_B133u5h_nSnKaEMwVjRT6kiZ2KcUrdPb6DcQD5pgPQan13rMR4_56DE4fR-c3mfpi9MFkPLMXcwD9-msp0IJhXGTubdH7rfv7OG__fVsdjlWWV8e9TlTuz_rId5pIZnk-vbzXP_8_lGKr7czLdlfL7C8gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1232910082</pqid></control><display><type>article</type><title>Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>ASKES, H. ; LIVIERI, P. ; SUSMEL, L. ; TAYLOR, D. ; TOVO, R.</creator><creatorcontrib>ASKES, H. ; LIVIERI, P. ; SUSMEL, L. ; TAYLOR, D. ; TOVO, R.</creatorcontrib><description>ABSTRACT
The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on the material in the vicinity of the geometrical features being assessed. In other words, the TCD estimates static and high‐cycle fatigue strength of cracked bodies by making use of a critical distance and a reference strength which are assumed to be material constants whose values change as the material microstructural features vary. Similarly, Gradient Mechanics postulates that the relevant stress fields in the vicinity of crack tips have to be determined by directly incorporating into the material constitutive law an intrinsic scale length. The main advantage of such a method is that stress fields become non‐singular also in the presence of cracks and sharp notches. The above idea can be formalized in different ways allowing, under both static and high‐cycle fatigue loading, the static and high‐cycle fatigue assessment of cracked/notched components to be performed without the need for defining the position of the failure locations a priori.
The present paper investigates the existing analogies and differences between the TCD and Gradient Mechanics, the latter formalized according to the so‐called Implicit Gradient Method, when such theories are used to process linear‐elastic crack tip stress fields.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/j.1460-2695.2012.01687.x</identifier><identifier>CODEN: FFESEY</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analogies ; Applied sciences ; Constants ; crack tip ; Cracks ; Exact sciences and technology ; Fatigue failure ; Fracture mechanics ; gradient elasticity ; High cycle fatigue ; Implicit Gradient Method ; intrinsic length ; Materials fatigue ; Materials science ; Mathematical analysis ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; non-local continuum ; Strength ; Stress analysis ; Stresses ; Theory of Critical Distances</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2013-01, Vol.36 (1), p.39-55</ispartof><rights>2012 Wiley Publishing Ltd.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33</citedby><cites>FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,4050,4051,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26868009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ASKES, H.</creatorcontrib><creatorcontrib>LIVIERI, P.</creatorcontrib><creatorcontrib>SUSMEL, L.</creatorcontrib><creatorcontrib>TAYLOR, D.</creatorcontrib><creatorcontrib>TOVO, R.</creatorcontrib><title>Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields</title><title>Fatigue & fracture of engineering materials & structures</title><description>ABSTRACT
The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on the material in the vicinity of the geometrical features being assessed. In other words, the TCD estimates static and high‐cycle fatigue strength of cracked bodies by making use of a critical distance and a reference strength which are assumed to be material constants whose values change as the material microstructural features vary. Similarly, Gradient Mechanics postulates that the relevant stress fields in the vicinity of crack tips have to be determined by directly incorporating into the material constitutive law an intrinsic scale length. The main advantage of such a method is that stress fields become non‐singular also in the presence of cracks and sharp notches. The above idea can be formalized in different ways allowing, under both static and high‐cycle fatigue loading, the static and high‐cycle fatigue assessment of cracked/notched components to be performed without the need for defining the position of the failure locations a priori.
The present paper investigates the existing analogies and differences between the TCD and Gradient Mechanics, the latter formalized according to the so‐called Implicit Gradient Method, when such theories are used to process linear‐elastic crack tip stress fields.</description><subject>Analogies</subject><subject>Applied sciences</subject><subject>Constants</subject><subject>crack tip</subject><subject>Cracks</subject><subject>Exact sciences and technology</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>gradient elasticity</subject><subject>High cycle fatigue</subject><subject>Implicit Gradient Method</subject><subject>intrinsic length</subject><subject>Materials fatigue</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>non-local continuum</subject><subject>Strength</subject><subject>Stress analysis</subject><subject>Stresses</subject><subject>Theory of Critical Distances</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkc2O0zAUhSMEEmXgHSwhJBYk-Cf-CRILVKZlxABCGhjExrp17Nad1Cl2KtqX4VlxplUXrPDGV77fObbvKQpEcEXyer2uSC1wSUXDK4oJrTARSlb7B8Xk3HhYTJTkopRc_XhcPElpjTNVMzYp_lyFIfqQvEEbGGz00KHOhuWweoVuVraPB9Q7NI1-8Ca33vs0QDA2IQgtmkdovQ0D-mTNCoI36U0-h65f-hPReudstPcKH9A29rlKPixR54OFWNoOUrZGJoK5Q4PfojTEjCDnbdemp8UjB12yz077RfFtdnkz_VBef5lfTd9dl4ZJKkvGRds2oIRoGrfA1nBFCSgs28YAAUFqXjvBWiB1IzG1ctFyJyjmjinFF4xdFC-PvvmFv3Y2DXrjk7FdB8H2u6SJkKSuG17LjD7_B133u5h_nSnKaEMwVjRT6kiZ2KcUrdPb6DcQD5pgPQan13rMR4_56DE4fR-c3mfpi9MFkPLMXcwD9-msp0IJhXGTubdH7rfv7OG__fVsdjlWWV8e9TlTuz_rId5pIZnk-vbzXP_8_lGKr7czLdlfL7C8gA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>ASKES, H.</creator><creator>LIVIERI, P.</creator><creator>SUSMEL, L.</creator><creator>TAYLOR, D.</creator><creator>TOVO, R.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201301</creationdate><title>Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields</title><author>ASKES, H. ; LIVIERI, P. ; SUSMEL, L. ; TAYLOR, D. ; TOVO, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analogies</topic><topic>Applied sciences</topic><topic>Constants</topic><topic>crack tip</topic><topic>Cracks</topic><topic>Exact sciences and technology</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>gradient elasticity</topic><topic>High cycle fatigue</topic><topic>Implicit Gradient Method</topic><topic>intrinsic length</topic><topic>Materials fatigue</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>non-local continuum</topic><topic>Strength</topic><topic>Stress analysis</topic><topic>Stresses</topic><topic>Theory of Critical Distances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ASKES, H.</creatorcontrib><creatorcontrib>LIVIERI, P.</creatorcontrib><creatorcontrib>SUSMEL, L.</creatorcontrib><creatorcontrib>TAYLOR, D.</creatorcontrib><creatorcontrib>TOVO, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ASKES, H.</au><au>LIVIERI, P.</au><au>SUSMEL, L.</au><au>TAYLOR, D.</au><au>TOVO, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2013-01</date><risdate>2013</risdate><volume>36</volume><issue>1</issue><spage>39</spage><epage>55</epage><pages>39-55</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><coden>FFESEY</coden><abstract>ABSTRACT
The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on the material in the vicinity of the geometrical features being assessed. In other words, the TCD estimates static and high‐cycle fatigue strength of cracked bodies by making use of a critical distance and a reference strength which are assumed to be material constants whose values change as the material microstructural features vary. Similarly, Gradient Mechanics postulates that the relevant stress fields in the vicinity of crack tips have to be determined by directly incorporating into the material constitutive law an intrinsic scale length. The main advantage of such a method is that stress fields become non‐singular also in the presence of cracks and sharp notches. The above idea can be formalized in different ways allowing, under both static and high‐cycle fatigue loading, the static and high‐cycle fatigue assessment of cracked/notched components to be performed without the need for defining the position of the failure locations a priori.
The present paper investigates the existing analogies and differences between the TCD and Gradient Mechanics, the latter formalized according to the so‐called Implicit Gradient Method, when such theories are used to process linear‐elastic crack tip stress fields.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1460-2695.2012.01687.x</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2013-01, Vol.36 (1), p.39-55 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671449547 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Analogies Applied sciences Constants crack tip Cracks Exact sciences and technology Fatigue failure Fracture mechanics gradient elasticity High cycle fatigue Implicit Gradient Method intrinsic length Materials fatigue Materials science Mathematical analysis Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy non-local continuum Strength Stress analysis Stresses Theory of Critical Distances |
title | Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20material%20length,%20Theory%20of%20Critical%20Distances%20and%20Gradient%20Mechanics:%20analogies%20and%20differences%20in%20processing%20linear-elastic%20crack%20tip%20stress%20fields&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=ASKES,%20H.&rft.date=2013-01&rft.volume=36&rft.issue=1&rft.spage=39&rft.epage=55&rft.pages=39-55&rft.issn=8756-758X&rft.eissn=1460-2695&rft.coden=FFESEY&rft_id=info:doi/10.1111/j.1460-2695.2012.01687.x&rft_dat=%3Cproquest_cross%3E2837583541%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1232910082&rft_id=info:pmid/&rfr_iscdi=true |