Loading…

Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields

ABSTRACT The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on...

Full description

Saved in:
Bibliographic Details
Published in:Fatigue & fracture of engineering materials & structures 2013-01, Vol.36 (1), p.39-55
Main Authors: ASKES, H., LIVIERI, P., SUSMEL, L., TAYLOR, D., TOVO, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33
cites cdi_FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33
container_end_page 55
container_issue 1
container_start_page 39
container_title Fatigue & fracture of engineering materials & structures
container_volume 36
creator ASKES, H.
LIVIERI, P.
SUSMEL, L.
TAYLOR, D.
TOVO, R.
description ABSTRACT The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on the material in the vicinity of the geometrical features being assessed. In other words, the TCD estimates static and high‐cycle fatigue strength of cracked bodies by making use of a critical distance and a reference strength which are assumed to be material constants whose values change as the material microstructural features vary. Similarly, Gradient Mechanics postulates that the relevant stress fields in the vicinity of crack tips have to be determined by directly incorporating into the material constitutive law an intrinsic scale length. The main advantage of such a method is that stress fields become non‐singular also in the presence of cracks and sharp notches. The above idea can be formalized in different ways allowing, under both static and high‐cycle fatigue loading, the static and high‐cycle fatigue assessment of cracked/notched components to be performed without the need for defining the position of the failure locations a priori. The present paper investigates the existing analogies and differences between the TCD and Gradient Mechanics, the latter formalized according to the so‐called Implicit Gradient Method, when such theories are used to process linear‐elastic crack tip stress fields.
doi_str_mv 10.1111/j.1460-2695.2012.01687.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671449547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2837583541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33</originalsourceid><addsrcrecordid>eNqNkc2O0zAUhSMEEmXgHSwhJBYk-Cf-CRILVKZlxABCGhjExrp17Nad1Cl2KtqX4VlxplUXrPDGV77fObbvKQpEcEXyer2uSC1wSUXDK4oJrTARSlb7B8Xk3HhYTJTkopRc_XhcPElpjTNVMzYp_lyFIfqQvEEbGGz00KHOhuWweoVuVraPB9Q7NI1-8Ca33vs0QDA2IQgtmkdovQ0D-mTNCoI36U0-h65f-hPReudstPcKH9A29rlKPixR54OFWNoOUrZGJoK5Q4PfojTEjCDnbdemp8UjB12yz077RfFtdnkz_VBef5lfTd9dl4ZJKkvGRds2oIRoGrfA1nBFCSgs28YAAUFqXjvBWiB1IzG1ctFyJyjmjinFF4xdFC-PvvmFv3Y2DXrjk7FdB8H2u6SJkKSuG17LjD7_B133u5h_nSnKaEMwVjRT6kiZ2KcUrdPb6DcQD5pgPQan13rMR4_56DE4fR-c3mfpi9MFkPLMXcwD9-msp0IJhXGTubdH7rfv7OG__fVsdjlWWV8e9TlTuz_rId5pIZnk-vbzXP_8_lGKr7czLdlfL7C8gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1232910082</pqid></control><display><type>article</type><title>Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>ASKES, H. ; LIVIERI, P. ; SUSMEL, L. ; TAYLOR, D. ; TOVO, R.</creator><creatorcontrib>ASKES, H. ; LIVIERI, P. ; SUSMEL, L. ; TAYLOR, D. ; TOVO, R.</creatorcontrib><description>ABSTRACT The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on the material in the vicinity of the geometrical features being assessed. In other words, the TCD estimates static and high‐cycle fatigue strength of cracked bodies by making use of a critical distance and a reference strength which are assumed to be material constants whose values change as the material microstructural features vary. Similarly, Gradient Mechanics postulates that the relevant stress fields in the vicinity of crack tips have to be determined by directly incorporating into the material constitutive law an intrinsic scale length. The main advantage of such a method is that stress fields become non‐singular also in the presence of cracks and sharp notches. The above idea can be formalized in different ways allowing, under both static and high‐cycle fatigue loading, the static and high‐cycle fatigue assessment of cracked/notched components to be performed without the need for defining the position of the failure locations a priori. The present paper investigates the existing analogies and differences between the TCD and Gradient Mechanics, the latter formalized according to the so‐called Implicit Gradient Method, when such theories are used to process linear‐elastic crack tip stress fields.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/j.1460-2695.2012.01687.x</identifier><identifier>CODEN: FFESEY</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Analogies ; Applied sciences ; Constants ; crack tip ; Cracks ; Exact sciences and technology ; Fatigue failure ; Fracture mechanics ; gradient elasticity ; High cycle fatigue ; Implicit Gradient Method ; intrinsic length ; Materials fatigue ; Materials science ; Mathematical analysis ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; non-local continuum ; Strength ; Stress analysis ; Stresses ; Theory of Critical Distances</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2013-01, Vol.36 (1), p.39-55</ispartof><rights>2012 Wiley Publishing Ltd.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33</citedby><cites>FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,4050,4051,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26868009$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ASKES, H.</creatorcontrib><creatorcontrib>LIVIERI, P.</creatorcontrib><creatorcontrib>SUSMEL, L.</creatorcontrib><creatorcontrib>TAYLOR, D.</creatorcontrib><creatorcontrib>TOVO, R.</creatorcontrib><title>Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>ABSTRACT The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on the material in the vicinity of the geometrical features being assessed. In other words, the TCD estimates static and high‐cycle fatigue strength of cracked bodies by making use of a critical distance and a reference strength which are assumed to be material constants whose values change as the material microstructural features vary. Similarly, Gradient Mechanics postulates that the relevant stress fields in the vicinity of crack tips have to be determined by directly incorporating into the material constitutive law an intrinsic scale length. The main advantage of such a method is that stress fields become non‐singular also in the presence of cracks and sharp notches. The above idea can be formalized in different ways allowing, under both static and high‐cycle fatigue loading, the static and high‐cycle fatigue assessment of cracked/notched components to be performed without the need for defining the position of the failure locations a priori. The present paper investigates the existing analogies and differences between the TCD and Gradient Mechanics, the latter formalized according to the so‐called Implicit Gradient Method, when such theories are used to process linear‐elastic crack tip stress fields.</description><subject>Analogies</subject><subject>Applied sciences</subject><subject>Constants</subject><subject>crack tip</subject><subject>Cracks</subject><subject>Exact sciences and technology</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>gradient elasticity</subject><subject>High cycle fatigue</subject><subject>Implicit Gradient Method</subject><subject>intrinsic length</subject><subject>Materials fatigue</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>non-local continuum</subject><subject>Strength</subject><subject>Stress analysis</subject><subject>Stresses</subject><subject>Theory of Critical Distances</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkc2O0zAUhSMEEmXgHSwhJBYk-Cf-CRILVKZlxABCGhjExrp17Nad1Cl2KtqX4VlxplUXrPDGV77fObbvKQpEcEXyer2uSC1wSUXDK4oJrTARSlb7B8Xk3HhYTJTkopRc_XhcPElpjTNVMzYp_lyFIfqQvEEbGGz00KHOhuWweoVuVraPB9Q7NI1-8Ca33vs0QDA2IQgtmkdovQ0D-mTNCoI36U0-h65f-hPReudstPcKH9A29rlKPixR54OFWNoOUrZGJoK5Q4PfojTEjCDnbdemp8UjB12yz077RfFtdnkz_VBef5lfTd9dl4ZJKkvGRds2oIRoGrfA1nBFCSgs28YAAUFqXjvBWiB1IzG1ctFyJyjmjinFF4xdFC-PvvmFv3Y2DXrjk7FdB8H2u6SJkKSuG17LjD7_B133u5h_nSnKaEMwVjRT6kiZ2KcUrdPb6DcQD5pgPQan13rMR4_56DE4fR-c3mfpi9MFkPLMXcwD9-msp0IJhXGTubdH7rfv7OG__fVsdjlWWV8e9TlTuz_rId5pIZnk-vbzXP_8_lGKr7czLdlfL7C8gA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>ASKES, H.</creator><creator>LIVIERI, P.</creator><creator>SUSMEL, L.</creator><creator>TAYLOR, D.</creator><creator>TOVO, R.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201301</creationdate><title>Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields</title><author>ASKES, H. ; LIVIERI, P. ; SUSMEL, L. ; TAYLOR, D. ; TOVO, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analogies</topic><topic>Applied sciences</topic><topic>Constants</topic><topic>crack tip</topic><topic>Cracks</topic><topic>Exact sciences and technology</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>gradient elasticity</topic><topic>High cycle fatigue</topic><topic>Implicit Gradient Method</topic><topic>intrinsic length</topic><topic>Materials fatigue</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>non-local continuum</topic><topic>Strength</topic><topic>Stress analysis</topic><topic>Stresses</topic><topic>Theory of Critical Distances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ASKES, H.</creatorcontrib><creatorcontrib>LIVIERI, P.</creatorcontrib><creatorcontrib>SUSMEL, L.</creatorcontrib><creatorcontrib>TAYLOR, D.</creatorcontrib><creatorcontrib>TOVO, R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ASKES, H.</au><au>LIVIERI, P.</au><au>SUSMEL, L.</au><au>TAYLOR, D.</au><au>TOVO, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2013-01</date><risdate>2013</risdate><volume>36</volume><issue>1</issue><spage>39</spage><epage>55</epage><pages>39-55</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><coden>FFESEY</coden><abstract>ABSTRACT The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on the material in the vicinity of the geometrical features being assessed. In other words, the TCD estimates static and high‐cycle fatigue strength of cracked bodies by making use of a critical distance and a reference strength which are assumed to be material constants whose values change as the material microstructural features vary. Similarly, Gradient Mechanics postulates that the relevant stress fields in the vicinity of crack tips have to be determined by directly incorporating into the material constitutive law an intrinsic scale length. The main advantage of such a method is that stress fields become non‐singular also in the presence of cracks and sharp notches. The above idea can be formalized in different ways allowing, under both static and high‐cycle fatigue loading, the static and high‐cycle fatigue assessment of cracked/notched components to be performed without the need for defining the position of the failure locations a priori. The present paper investigates the existing analogies and differences between the TCD and Gradient Mechanics, the latter formalized according to the so‐called Implicit Gradient Method, when such theories are used to process linear‐elastic crack tip stress fields.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1460-2695.2012.01687.x</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2013-01, Vol.36 (1), p.39-55
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_miscellaneous_1671449547
source Wiley-Blackwell Read & Publish Collection
subjects Analogies
Applied sciences
Constants
crack tip
Cracks
Exact sciences and technology
Fatigue failure
Fracture mechanics
gradient elasticity
High cycle fatigue
Implicit Gradient Method
intrinsic length
Materials fatigue
Materials science
Mathematical analysis
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
non-local continuum
Strength
Stress analysis
Stresses
Theory of Critical Distances
title Intrinsic material length, Theory of Critical Distances and Gradient Mechanics: analogies and differences in processing linear-elastic crack tip stress fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20material%20length,%20Theory%20of%20Critical%20Distances%20and%20Gradient%20Mechanics:%20analogies%20and%20differences%20in%20processing%20linear-elastic%20crack%20tip%20stress%20fields&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=ASKES,%20H.&rft.date=2013-01&rft.volume=36&rft.issue=1&rft.spage=39&rft.epage=55&rft.pages=39-55&rft.issn=8756-758X&rft.eissn=1460-2695&rft.coden=FFESEY&rft_id=info:doi/10.1111/j.1460-2695.2012.01687.x&rft_dat=%3Cproquest_cross%3E2837583541%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3727-356dd9a86699fb0ec5821a807d9ca1a61454f63da149702e7bd5f6205f3885b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1232910082&rft_id=info:pmid/&rfr_iscdi=true