Loading…

Statistical and signal-based network traffic recognition for anomaly detection

In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0‐day attacks and reduce false positives. Moreover, we propose to combine statistical and signal‐based features...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems 2012-07, Vol.29 (3), p.232-245
Main Authors: Choraś, Michał, Saganowski, Łukasz, Renk, Rafał, Hołubowicz, Witold
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4126-ff473d0ca97b82307836fc8cc45ae6fcbdd2cab29980b6f1f70faee3bf5ab7813
cites cdi_FETCH-LOGICAL-c4126-ff473d0ca97b82307836fc8cc45ae6fcbdd2cab29980b6f1f70faee3bf5ab7813
container_end_page 245
container_issue 3
container_start_page 232
container_title Expert systems
container_volume 29
creator Choraś, Michał
Saganowski, Łukasz
Renk, Rafał
Hołubowicz, Witold
description In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0‐day attacks and reduce false positives. Moreover, we propose to combine statistical and signal‐based features. The major contribution of this paper is novel framework for network security based on the correlation approach as well as new signal‐based algorithm for intrusion detection on the basis of the Matching Pursuit (MP) algorithm. As to our best knowledge, we are the first to use MP for intrusion and anomaly detection in computer networks. In the presented experiments, we proved that our solution gives better results than intrusion detection based on discrete wavelet transform.
doi_str_mv 10.1111/j.1468-0394.2010.00576.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671449622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671449622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4126-ff473d0ca97b82307836fc8cc45ae6fcbdd2cab29980b6f1f70faee3bf5ab7813</originalsourceid><addsrcrecordid>eNqNkctKAzEUhoMoWC_vMODGzdTcJsksXEjRKhVFVKyrkMkkJXU6qcmUtm9vxooLV2aTw8n3HTh_AMgQHKJ0LuZDRJnIISnpEMPUhbDgbLjZA4Pfh30wgJixnHIMD8FRjHMIIeKcDcDDc6c6FzunVZOpts6im7WqySsVTZ21plv78JF1QVnrdBaM9rPWdc63mfUhCX6hmm1Wm87ovnsCDqxqojn9uY_B6831y-g2v38c342u7nNNEWa5tZSTGmpV8kpgArkgzGqhNS2USVVV11irCpelgBWzyHJolTGksoWquEDkGJzv5i6D_1yZ2MmFi9o0jWqNX0WJGEeUlgzjhJ79Qed-FdKOiYKYIIFp0Q8UO0oHH2MwVi6DW6iwTZDsg5Zz2ecp-zxlH7T8Dlpuknq5U9euMdt_e_J6-vyequTnOz99g9n8-ip8SMYJL-Tbw1g-TSYFm06EHJMvPxmUSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023182451</pqid></control><display><type>article</type><title>Statistical and signal-based network traffic recognition for anomaly detection</title><source>Business Source Ultimate</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Choraś, Michał ; Saganowski, Łukasz ; Renk, Rafał ; Hołubowicz, Witold</creator><creatorcontrib>Choraś, Michał ; Saganowski, Łukasz ; Renk, Rafał ; Hołubowicz, Witold</creatorcontrib><description>In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0‐day attacks and reduce false positives. Moreover, we propose to combine statistical and signal‐based features. The major contribution of this paper is novel framework for network security based on the correlation approach as well as new signal‐based algorithm for intrusion detection on the basis of the Matching Pursuit (MP) algorithm. As to our best knowledge, we are the first to use MP for intrusion and anomaly detection in computer networks. In the presented experiments, we proved that our solution gives better results than intrusion detection based on discrete wavelet transform.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/j.1468-0394.2010.00576.x</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Anomalies ; anomaly detection ; Correlation ; Expert systems ; Intrusion ; Intrusion detection systems ; matching pursuit ; network security ; Networks ; Recognition ; signal processing ; Studies ; Traffic engineering ; Traffic flow ; Wavelet transforms</subject><ispartof>Expert systems, 2012-07, Vol.29 (3), p.232-245</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>Copyright © 2012 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4126-ff473d0ca97b82307836fc8cc45ae6fcbdd2cab29980b6f1f70faee3bf5ab7813</citedby><cites>FETCH-LOGICAL-c4126-ff473d0ca97b82307836fc8cc45ae6fcbdd2cab29980b6f1f70faee3bf5ab7813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Choraś, Michał</creatorcontrib><creatorcontrib>Saganowski, Łukasz</creatorcontrib><creatorcontrib>Renk, Rafał</creatorcontrib><creatorcontrib>Hołubowicz, Witold</creatorcontrib><title>Statistical and signal-based network traffic recognition for anomaly detection</title><title>Expert systems</title><addtitle>Expert Systems</addtitle><description>In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0‐day attacks and reduce false positives. Moreover, we propose to combine statistical and signal‐based features. The major contribution of this paper is novel framework for network security based on the correlation approach as well as new signal‐based algorithm for intrusion detection on the basis of the Matching Pursuit (MP) algorithm. As to our best knowledge, we are the first to use MP for intrusion and anomaly detection in computer networks. In the presented experiments, we proved that our solution gives better results than intrusion detection based on discrete wavelet transform.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>anomaly detection</subject><subject>Correlation</subject><subject>Expert systems</subject><subject>Intrusion</subject><subject>Intrusion detection systems</subject><subject>matching pursuit</subject><subject>network security</subject><subject>Networks</subject><subject>Recognition</subject><subject>signal processing</subject><subject>Studies</subject><subject>Traffic engineering</subject><subject>Traffic flow</subject><subject>Wavelet transforms</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkctKAzEUhoMoWC_vMODGzdTcJsksXEjRKhVFVKyrkMkkJXU6qcmUtm9vxooLV2aTw8n3HTh_AMgQHKJ0LuZDRJnIISnpEMPUhbDgbLjZA4Pfh30wgJixnHIMD8FRjHMIIeKcDcDDc6c6FzunVZOpts6im7WqySsVTZ21plv78JF1QVnrdBaM9rPWdc63mfUhCX6hmm1Wm87ovnsCDqxqojn9uY_B6831y-g2v38c342u7nNNEWa5tZSTGmpV8kpgArkgzGqhNS2USVVV11irCpelgBWzyHJolTGksoWquEDkGJzv5i6D_1yZ2MmFi9o0jWqNX0WJGEeUlgzjhJ79Qed-FdKOiYKYIIFp0Q8UO0oHH2MwVi6DW6iwTZDsg5Zz2ecp-zxlH7T8Dlpuknq5U9euMdt_e_J6-vyequTnOz99g9n8-ip8SMYJL-Tbw1g-TSYFm06EHJMvPxmUSg</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Choraś, Michał</creator><creator>Saganowski, Łukasz</creator><creator>Renk, Rafał</creator><creator>Hołubowicz, Witold</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201207</creationdate><title>Statistical and signal-based network traffic recognition for anomaly detection</title><author>Choraś, Michał ; Saganowski, Łukasz ; Renk, Rafał ; Hołubowicz, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4126-ff473d0ca97b82307836fc8cc45ae6fcbdd2cab29980b6f1f70faee3bf5ab7813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>anomaly detection</topic><topic>Correlation</topic><topic>Expert systems</topic><topic>Intrusion</topic><topic>Intrusion detection systems</topic><topic>matching pursuit</topic><topic>network security</topic><topic>Networks</topic><topic>Recognition</topic><topic>signal processing</topic><topic>Studies</topic><topic>Traffic engineering</topic><topic>Traffic flow</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choraś, Michał</creatorcontrib><creatorcontrib>Saganowski, Łukasz</creatorcontrib><creatorcontrib>Renk, Rafał</creatorcontrib><creatorcontrib>Hołubowicz, Witold</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choraś, Michał</au><au>Saganowski, Łukasz</au><au>Renk, Rafał</au><au>Hołubowicz, Witold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical and signal-based network traffic recognition for anomaly detection</atitle><jtitle>Expert systems</jtitle><addtitle>Expert Systems</addtitle><date>2012-07</date><risdate>2012</risdate><volume>29</volume><issue>3</issue><spage>232</spage><epage>245</epage><pages>232-245</pages><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0‐day attacks and reduce false positives. Moreover, we propose to combine statistical and signal‐based features. The major contribution of this paper is novel framework for network security based on the correlation approach as well as new signal‐based algorithm for intrusion detection on the basis of the Matching Pursuit (MP) algorithm. As to our best knowledge, we are the first to use MP for intrusion and anomaly detection in computer networks. In the presented experiments, we proved that our solution gives better results than intrusion detection based on discrete wavelet transform.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1468-0394.2010.00576.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2012-07, Vol.29 (3), p.232-245
issn 0266-4720
1468-0394
language eng
recordid cdi_proquest_miscellaneous_1671449622
source Business Source Ultimate; Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Anomalies
anomaly detection
Correlation
Expert systems
Intrusion
Intrusion detection systems
matching pursuit
network security
Networks
Recognition
signal processing
Studies
Traffic engineering
Traffic flow
Wavelet transforms
title Statistical and signal-based network traffic recognition for anomaly detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A05%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20and%20signal-based%20network%20traffic%20recognition%20for%20anomaly%20detection&rft.jtitle=Expert%20systems&rft.au=Chora%C5%9B,%20Micha%C5%82&rft.date=2012-07&rft.volume=29&rft.issue=3&rft.spage=232&rft.epage=245&rft.pages=232-245&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/j.1468-0394.2010.00576.x&rft_dat=%3Cproquest_cross%3E1671449622%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4126-ff473d0ca97b82307836fc8cc45ae6fcbdd2cab29980b6f1f70faee3bf5ab7813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1023182451&rft_id=info:pmid/&rfr_iscdi=true