Loading…
Integrated task and motion planning in belief space
We describe an integrated strategy for planning, perception, state estimation and action in complex mobile manipulation domains based on planning in the belief space of probability distributions over states using hierarchical goal regression (pre-image back-chaining). We develop a vocabulary of logi...
Saved in:
Published in: | The International journal of robotics research 2013-08, Vol.32 (9-10), p.1194-1227 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe an integrated strategy for planning, perception, state estimation and action in complex mobile manipulation domains based on planning in the belief space of probability distributions over states using hierarchical goal regression (pre-image back-chaining). We develop a vocabulary of logical expressions that describe sets of belief states, which are goals and subgoals in the planning process. We show that a relatively small set of symbolic operators can give rise to task-oriented perception in support of the manipulation goals. An implementation of this method is demonstrated in simulation and on a real PR2 robot, showing robust, flexible solution of mobile manipulation problems with multiple objects and substantial uncertainty. |
---|---|
ISSN: | 0278-3649 1741-3176 |
DOI: | 10.1177/0278364913484072 |