Loading…

Designing high efficiency segmented thermoelectric generators

► A design methodology for segmented TEGs is formulated on theoretical modeling. ► The efficiency and geometry of Bi2Te3, PbTe and Bi2Te3PbTe are derived for ΔT=325K. ► Bi2Te3PbTe exhibits an efficiency/ΔT ratio intermediate to Bi2Te3 and PbTe. ► (α¯) and (α˜) Bi2Te3PbTe exhibit a 60–68% thermal res...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management 2013-02, Vol.66, p.165-172
Main Authors: Hadjistassou, Constantinos, Kyriakides, Elias, Georgiou, Julius
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673
cites cdi_FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673
container_end_page 172
container_issue
container_start_page 165
container_title Energy conversion and management
container_volume 66
creator Hadjistassou, Constantinos
Kyriakides, Elias
Georgiou, Julius
description ► A design methodology for segmented TEGs is formulated on theoretical modeling. ► The efficiency and geometry of Bi2Te3, PbTe and Bi2Te3PbTe are derived for ΔT=325K. ► Bi2Te3PbTe exhibits an efficiency/ΔT ratio intermediate to Bi2Te3 and PbTe. ► (α¯) and (α˜) Bi2Te3PbTe exhibit a 60–68% thermal resistance match than Bi2Te3 and PbTe. Improving the efficiency of thermoelectric devices is critical to their widespread adoption. Here a design methodology, formulated on computational and analytical modeling, derives the optimum efficiency and geometry of segmented Bi2Te3–PbTe Thermoelectric Generators (TEGs) between ≈298K and ≈623K (ΔT≈325K). Comparisons between the different TEG designs, in terms of the electrical load to TEG electrical resistance ratio (m=RL/RTEG), are simplified thanks to the devised maximum efficiency to temperature gradient (βmax=η/ΔT) metric. Quasi-computational results of βmax show that the collective Seebeck coefficient Bi2Te3–PbTe (α˜) design sustains a higher electrical load in relation to the homogeneous Bi2Te3 and PbTe materials. The average (α¯) and collective (α˜) Seebeck coefficient Bi2Te3–PbTe configurations, in comparison to Bi2Te3 and PbTe, exhibit a considerably higher (60–68%) source and sink thermal resistance matching (ΘTEG=ΘHx). The proposed segmented Bi2Te3–PbTe (α˜) TEG yields a peak efficiency of 5.29% for a ΔT of 324.6K.
doi_str_mv 10.1016/j.enconman.2012.07.030
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671451156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890412003822</els_id><sourcerecordid>1348487993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BelF8NI6SdukOQiK3yB40XPIppNuljZdk67gvzfrqlcvMzC8H8xDyCmFggLlF6sCvRn9oH3BgLICRAEl7JEZbYTMGWNin8yASp43EqpDchTjCgDKGviMXN5idJ13vsuWrltmaK0zLgV-ZhG7Af2EbTYtMQwj9mim4EzWocegpzHEY3JgdR_x5GfPydv93evNY_788vB0c_2cmwqaKZeaCWhra6i2wEq5EGJBqaiqRi6YRWYNLy2ilIum0S0DnQ4VZ22d_hGSi3JOzne56zC-bzBOanDRYN9rj-MmKsoFrWpKa_6_tKyaKoGRZZLyndSEMcaAVq2DG3T4VBTUFq1aqV-0aotWgVAJbTKe_XToaHRvg_bGxT83E7Ss6zTm5Gqnw8Tmw2FQ8Zstti4klqod3X9VX1CWkiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348487993</pqid></control><display><type>article</type><title>Designing high efficiency segmented thermoelectric generators</title><source>ScienceDirect Freedom Collection</source><creator>Hadjistassou, Constantinos ; Kyriakides, Elias ; Georgiou, Julius</creator><creatorcontrib>Hadjistassou, Constantinos ; Kyriakides, Elias ; Georgiou, Julius</creatorcontrib><description>► A design methodology for segmented TEGs is formulated on theoretical modeling. ► The efficiency and geometry of Bi2Te3, PbTe and Bi2Te3PbTe are derived for ΔT=325K. ► Bi2Te3PbTe exhibits an efficiency/ΔT ratio intermediate to Bi2Te3 and PbTe. ► (α¯) and (α˜) Bi2Te3PbTe exhibit a 60–68% thermal resistance match than Bi2Te3 and PbTe. Improving the efficiency of thermoelectric devices is critical to their widespread adoption. Here a design methodology, formulated on computational and analytical modeling, derives the optimum efficiency and geometry of segmented Bi2Te3–PbTe Thermoelectric Generators (TEGs) between ≈298K and ≈623K (ΔT≈325K). Comparisons between the different TEG designs, in terms of the electrical load to TEG electrical resistance ratio (m=RL/RTEG), are simplified thanks to the devised maximum efficiency to temperature gradient (βmax=η/ΔT) metric. Quasi-computational results of βmax show that the collective Seebeck coefficient Bi2Te3–PbTe (α˜) design sustains a higher electrical load in relation to the homogeneous Bi2Te3 and PbTe materials. The average (α¯) and collective (α˜) Seebeck coefficient Bi2Te3–PbTe configurations, in comparison to Bi2Te3 and PbTe, exhibit a considerably higher (60–68%) source and sink thermal resistance matching (ΘTEG=ΘHx). The proposed segmented Bi2Te3–PbTe (α˜) TEG yields a peak efficiency of 5.29% for a ΔT of 324.6K.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2012.07.030</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Analytical model ; Applied sciences ; Coefficients ; Computational efficiency ; Computational model ; Computing time ; Efficiency ; Energy ; Exact sciences and technology ; Information technology ; Intermetallics ; Lead base alloys ; Lead tellurides ; Segmented ; Temperature ; Thermoelectric generator ; Thermoelectric generators</subject><ispartof>Energy conversion and management, 2013-02, Vol.66, p.165-172</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673</citedby><cites>FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27135571$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hadjistassou, Constantinos</creatorcontrib><creatorcontrib>Kyriakides, Elias</creatorcontrib><creatorcontrib>Georgiou, Julius</creatorcontrib><title>Designing high efficiency segmented thermoelectric generators</title><title>Energy conversion and management</title><description>► A design methodology for segmented TEGs is formulated on theoretical modeling. ► The efficiency and geometry of Bi2Te3, PbTe and Bi2Te3PbTe are derived for ΔT=325K. ► Bi2Te3PbTe exhibits an efficiency/ΔT ratio intermediate to Bi2Te3 and PbTe. ► (α¯) and (α˜) Bi2Te3PbTe exhibit a 60–68% thermal resistance match than Bi2Te3 and PbTe. Improving the efficiency of thermoelectric devices is critical to their widespread adoption. Here a design methodology, formulated on computational and analytical modeling, derives the optimum efficiency and geometry of segmented Bi2Te3–PbTe Thermoelectric Generators (TEGs) between ≈298K and ≈623K (ΔT≈325K). Comparisons between the different TEG designs, in terms of the electrical load to TEG electrical resistance ratio (m=RL/RTEG), are simplified thanks to the devised maximum efficiency to temperature gradient (βmax=η/ΔT) metric. Quasi-computational results of βmax show that the collective Seebeck coefficient Bi2Te3–PbTe (α˜) design sustains a higher electrical load in relation to the homogeneous Bi2Te3 and PbTe materials. The average (α¯) and collective (α˜) Seebeck coefficient Bi2Te3–PbTe configurations, in comparison to Bi2Te3 and PbTe, exhibit a considerably higher (60–68%) source and sink thermal resistance matching (ΘTEG=ΘHx). The proposed segmented Bi2Te3–PbTe (α˜) TEG yields a peak efficiency of 5.29% for a ΔT of 324.6K.</description><subject>Analytical model</subject><subject>Applied sciences</subject><subject>Coefficients</subject><subject>Computational efficiency</subject><subject>Computational model</subject><subject>Computing time</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Information technology</subject><subject>Intermetallics</subject><subject>Lead base alloys</subject><subject>Lead tellurides</subject><subject>Segmented</subject><subject>Temperature</subject><subject>Thermoelectric generator</subject><subject>Thermoelectric generators</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BelF8NI6SdukOQiK3yB40XPIppNuljZdk67gvzfrqlcvMzC8H8xDyCmFggLlF6sCvRn9oH3BgLICRAEl7JEZbYTMGWNin8yASp43EqpDchTjCgDKGviMXN5idJ13vsuWrltmaK0zLgV-ZhG7Af2EbTYtMQwj9mim4EzWocegpzHEY3JgdR_x5GfPydv93evNY_788vB0c_2cmwqaKZeaCWhra6i2wEq5EGJBqaiqRi6YRWYNLy2ilIum0S0DnQ4VZ22d_hGSi3JOzne56zC-bzBOanDRYN9rj-MmKsoFrWpKa_6_tKyaKoGRZZLyndSEMcaAVq2DG3T4VBTUFq1aqV-0aotWgVAJbTKe_XToaHRvg_bGxT83E7Ss6zTm5Gqnw8Tmw2FQ8Zstti4klqod3X9VX1CWkiQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Hadjistassou, Constantinos</creator><creator>Kyriakides, Elias</creator><creator>Georgiou, Julius</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TV</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20130201</creationdate><title>Designing high efficiency segmented thermoelectric generators</title><author>Hadjistassou, Constantinos ; Kyriakides, Elias ; Georgiou, Julius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytical model</topic><topic>Applied sciences</topic><topic>Coefficients</topic><topic>Computational efficiency</topic><topic>Computational model</topic><topic>Computing time</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Information technology</topic><topic>Intermetallics</topic><topic>Lead base alloys</topic><topic>Lead tellurides</topic><topic>Segmented</topic><topic>Temperature</topic><topic>Thermoelectric generator</topic><topic>Thermoelectric generators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadjistassou, Constantinos</creatorcontrib><creatorcontrib>Kyriakides, Elias</creatorcontrib><creatorcontrib>Georgiou, Julius</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadjistassou, Constantinos</au><au>Kyriakides, Elias</au><au>Georgiou, Julius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing high efficiency segmented thermoelectric generators</atitle><jtitle>Energy conversion and management</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>66</volume><spage>165</spage><epage>172</epage><pages>165-172</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>► A design methodology for segmented TEGs is formulated on theoretical modeling. ► The efficiency and geometry of Bi2Te3, PbTe and Bi2Te3PbTe are derived for ΔT=325K. ► Bi2Te3PbTe exhibits an efficiency/ΔT ratio intermediate to Bi2Te3 and PbTe. ► (α¯) and (α˜) Bi2Te3PbTe exhibit a 60–68% thermal resistance match than Bi2Te3 and PbTe. Improving the efficiency of thermoelectric devices is critical to their widespread adoption. Here a design methodology, formulated on computational and analytical modeling, derives the optimum efficiency and geometry of segmented Bi2Te3–PbTe Thermoelectric Generators (TEGs) between ≈298K and ≈623K (ΔT≈325K). Comparisons between the different TEG designs, in terms of the electrical load to TEG electrical resistance ratio (m=RL/RTEG), are simplified thanks to the devised maximum efficiency to temperature gradient (βmax=η/ΔT) metric. Quasi-computational results of βmax show that the collective Seebeck coefficient Bi2Te3–PbTe (α˜) design sustains a higher electrical load in relation to the homogeneous Bi2Te3 and PbTe materials. The average (α¯) and collective (α˜) Seebeck coefficient Bi2Te3–PbTe configurations, in comparison to Bi2Te3 and PbTe, exhibit a considerably higher (60–68%) source and sink thermal resistance matching (ΘTEG=ΘHx). The proposed segmented Bi2Te3–PbTe (α˜) TEG yields a peak efficiency of 5.29% for a ΔT of 324.6K.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2012.07.030</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2013-02, Vol.66, p.165-172
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_1671451156
source ScienceDirect Freedom Collection
subjects Analytical model
Applied sciences
Coefficients
Computational efficiency
Computational model
Computing time
Efficiency
Energy
Exact sciences and technology
Information technology
Intermetallics
Lead base alloys
Lead tellurides
Segmented
Temperature
Thermoelectric generator
Thermoelectric generators
title Designing high efficiency segmented thermoelectric generators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20high%20efficiency%20segmented%20thermoelectric%20generators&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Hadjistassou,%20Constantinos&rft.date=2013-02-01&rft.volume=66&rft.spage=165&rft.epage=172&rft.pages=165-172&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2012.07.030&rft_dat=%3Cproquest_cross%3E1348487993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1348487993&rft_id=info:pmid/&rfr_iscdi=true