Loading…
Designing high efficiency segmented thermoelectric generators
► A design methodology for segmented TEGs is formulated on theoretical modeling. ► The efficiency and geometry of Bi2Te3, PbTe and Bi2Te3PbTe are derived for ΔT=325K. ► Bi2Te3PbTe exhibits an efficiency/ΔT ratio intermediate to Bi2Te3 and PbTe. ► (α¯) and (α˜) Bi2Te3PbTe exhibit a 60–68% thermal res...
Saved in:
Published in: | Energy conversion and management 2013-02, Vol.66, p.165-172 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673 |
container_end_page | 172 |
container_issue | |
container_start_page | 165 |
container_title | Energy conversion and management |
container_volume | 66 |
creator | Hadjistassou, Constantinos Kyriakides, Elias Georgiou, Julius |
description | ► A design methodology for segmented TEGs is formulated on theoretical modeling. ► The efficiency and geometry of Bi2Te3, PbTe and Bi2Te3PbTe are derived for ΔT=325K. ► Bi2Te3PbTe exhibits an efficiency/ΔT ratio intermediate to Bi2Te3 and PbTe. ► (α¯) and (α˜) Bi2Te3PbTe exhibit a 60–68% thermal resistance match than Bi2Te3 and PbTe.
Improving the efficiency of thermoelectric devices is critical to their widespread adoption. Here a design methodology, formulated on computational and analytical modeling, derives the optimum efficiency and geometry of segmented Bi2Te3–PbTe Thermoelectric Generators (TEGs) between ≈298K and ≈623K (ΔT≈325K). Comparisons between the different TEG designs, in terms of the electrical load to TEG electrical resistance ratio (m=RL/RTEG), are simplified thanks to the devised maximum efficiency to temperature gradient (βmax=η/ΔT) metric. Quasi-computational results of βmax show that the collective Seebeck coefficient Bi2Te3–PbTe (α˜) design sustains a higher electrical load in relation to the homogeneous Bi2Te3 and PbTe materials. The average (α¯) and collective (α˜) Seebeck coefficient Bi2Te3–PbTe configurations, in comparison to Bi2Te3 and PbTe, exhibit a considerably higher (60–68%) source and sink thermal resistance matching (ΘTEG=ΘHx). The proposed segmented Bi2Te3–PbTe (α˜) TEG yields a peak efficiency of 5.29% for a ΔT of 324.6K. |
doi_str_mv | 10.1016/j.enconman.2012.07.030 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671451156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890412003822</els_id><sourcerecordid>1348487993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BelF8NI6SdukOQiK3yB40XPIppNuljZdk67gvzfrqlcvMzC8H8xDyCmFggLlF6sCvRn9oH3BgLICRAEl7JEZbYTMGWNin8yASp43EqpDchTjCgDKGviMXN5idJ13vsuWrltmaK0zLgV-ZhG7Af2EbTYtMQwj9mim4EzWocegpzHEY3JgdR_x5GfPydv93evNY_788vB0c_2cmwqaKZeaCWhra6i2wEq5EGJBqaiqRi6YRWYNLy2ilIum0S0DnQ4VZ22d_hGSi3JOzne56zC-bzBOanDRYN9rj-MmKsoFrWpKa_6_tKyaKoGRZZLyndSEMcaAVq2DG3T4VBTUFq1aqV-0aotWgVAJbTKe_XToaHRvg_bGxT83E7Ss6zTm5Gqnw8Tmw2FQ8Zstti4klqod3X9VX1CWkiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348487993</pqid></control><display><type>article</type><title>Designing high efficiency segmented thermoelectric generators</title><source>ScienceDirect Freedom Collection</source><creator>Hadjistassou, Constantinos ; Kyriakides, Elias ; Georgiou, Julius</creator><creatorcontrib>Hadjistassou, Constantinos ; Kyriakides, Elias ; Georgiou, Julius</creatorcontrib><description>► A design methodology for segmented TEGs is formulated on theoretical modeling. ► The efficiency and geometry of Bi2Te3, PbTe and Bi2Te3PbTe are derived for ΔT=325K. ► Bi2Te3PbTe exhibits an efficiency/ΔT ratio intermediate to Bi2Te3 and PbTe. ► (α¯) and (α˜) Bi2Te3PbTe exhibit a 60–68% thermal resistance match than Bi2Te3 and PbTe.
Improving the efficiency of thermoelectric devices is critical to their widespread adoption. Here a design methodology, formulated on computational and analytical modeling, derives the optimum efficiency and geometry of segmented Bi2Te3–PbTe Thermoelectric Generators (TEGs) between ≈298K and ≈623K (ΔT≈325K). Comparisons between the different TEG designs, in terms of the electrical load to TEG electrical resistance ratio (m=RL/RTEG), are simplified thanks to the devised maximum efficiency to temperature gradient (βmax=η/ΔT) metric. Quasi-computational results of βmax show that the collective Seebeck coefficient Bi2Te3–PbTe (α˜) design sustains a higher electrical load in relation to the homogeneous Bi2Te3 and PbTe materials. The average (α¯) and collective (α˜) Seebeck coefficient Bi2Te3–PbTe configurations, in comparison to Bi2Te3 and PbTe, exhibit a considerably higher (60–68%) source and sink thermal resistance matching (ΘTEG=ΘHx). The proposed segmented Bi2Te3–PbTe (α˜) TEG yields a peak efficiency of 5.29% for a ΔT of 324.6K.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2012.07.030</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Analytical model ; Applied sciences ; Coefficients ; Computational efficiency ; Computational model ; Computing time ; Efficiency ; Energy ; Exact sciences and technology ; Information technology ; Intermetallics ; Lead base alloys ; Lead tellurides ; Segmented ; Temperature ; Thermoelectric generator ; Thermoelectric generators</subject><ispartof>Energy conversion and management, 2013-02, Vol.66, p.165-172</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673</citedby><cites>FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27135571$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hadjistassou, Constantinos</creatorcontrib><creatorcontrib>Kyriakides, Elias</creatorcontrib><creatorcontrib>Georgiou, Julius</creatorcontrib><title>Designing high efficiency segmented thermoelectric generators</title><title>Energy conversion and management</title><description>► A design methodology for segmented TEGs is formulated on theoretical modeling. ► The efficiency and geometry of Bi2Te3, PbTe and Bi2Te3PbTe are derived for ΔT=325K. ► Bi2Te3PbTe exhibits an efficiency/ΔT ratio intermediate to Bi2Te3 and PbTe. ► (α¯) and (α˜) Bi2Te3PbTe exhibit a 60–68% thermal resistance match than Bi2Te3 and PbTe.
Improving the efficiency of thermoelectric devices is critical to their widespread adoption. Here a design methodology, formulated on computational and analytical modeling, derives the optimum efficiency and geometry of segmented Bi2Te3–PbTe Thermoelectric Generators (TEGs) between ≈298K and ≈623K (ΔT≈325K). Comparisons between the different TEG designs, in terms of the electrical load to TEG electrical resistance ratio (m=RL/RTEG), are simplified thanks to the devised maximum efficiency to temperature gradient (βmax=η/ΔT) metric. Quasi-computational results of βmax show that the collective Seebeck coefficient Bi2Te3–PbTe (α˜) design sustains a higher electrical load in relation to the homogeneous Bi2Te3 and PbTe materials. The average (α¯) and collective (α˜) Seebeck coefficient Bi2Te3–PbTe configurations, in comparison to Bi2Te3 and PbTe, exhibit a considerably higher (60–68%) source and sink thermal resistance matching (ΘTEG=ΘHx). The proposed segmented Bi2Te3–PbTe (α˜) TEG yields a peak efficiency of 5.29% for a ΔT of 324.6K.</description><subject>Analytical model</subject><subject>Applied sciences</subject><subject>Coefficients</subject><subject>Computational efficiency</subject><subject>Computational model</subject><subject>Computing time</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Information technology</subject><subject>Intermetallics</subject><subject>Lead base alloys</subject><subject>Lead tellurides</subject><subject>Segmented</subject><subject>Temperature</subject><subject>Thermoelectric generator</subject><subject>Thermoelectric generators</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BelF8NI6SdukOQiK3yB40XPIppNuljZdk67gvzfrqlcvMzC8H8xDyCmFggLlF6sCvRn9oH3BgLICRAEl7JEZbYTMGWNin8yASp43EqpDchTjCgDKGviMXN5idJ13vsuWrltmaK0zLgV-ZhG7Af2EbTYtMQwj9mim4EzWocegpzHEY3JgdR_x5GfPydv93evNY_788vB0c_2cmwqaKZeaCWhra6i2wEq5EGJBqaiqRi6YRWYNLy2ilIum0S0DnQ4VZ22d_hGSi3JOzne56zC-bzBOanDRYN9rj-MmKsoFrWpKa_6_tKyaKoGRZZLyndSEMcaAVq2DG3T4VBTUFq1aqV-0aotWgVAJbTKe_XToaHRvg_bGxT83E7Ss6zTm5Gqnw8Tmw2FQ8Zstti4klqod3X9VX1CWkiQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Hadjistassou, Constantinos</creator><creator>Kyriakides, Elias</creator><creator>Georgiou, Julius</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TV</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20130201</creationdate><title>Designing high efficiency segmented thermoelectric generators</title><author>Hadjistassou, Constantinos ; Kyriakides, Elias ; Georgiou, Julius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytical model</topic><topic>Applied sciences</topic><topic>Coefficients</topic><topic>Computational efficiency</topic><topic>Computational model</topic><topic>Computing time</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Information technology</topic><topic>Intermetallics</topic><topic>Lead base alloys</topic><topic>Lead tellurides</topic><topic>Segmented</topic><topic>Temperature</topic><topic>Thermoelectric generator</topic><topic>Thermoelectric generators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadjistassou, Constantinos</creatorcontrib><creatorcontrib>Kyriakides, Elias</creatorcontrib><creatorcontrib>Georgiou, Julius</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadjistassou, Constantinos</au><au>Kyriakides, Elias</au><au>Georgiou, Julius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing high efficiency segmented thermoelectric generators</atitle><jtitle>Energy conversion and management</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>66</volume><spage>165</spage><epage>172</epage><pages>165-172</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>► A design methodology for segmented TEGs is formulated on theoretical modeling. ► The efficiency and geometry of Bi2Te3, PbTe and Bi2Te3PbTe are derived for ΔT=325K. ► Bi2Te3PbTe exhibits an efficiency/ΔT ratio intermediate to Bi2Te3 and PbTe. ► (α¯) and (α˜) Bi2Te3PbTe exhibit a 60–68% thermal resistance match than Bi2Te3 and PbTe.
Improving the efficiency of thermoelectric devices is critical to their widespread adoption. Here a design methodology, formulated on computational and analytical modeling, derives the optimum efficiency and geometry of segmented Bi2Te3–PbTe Thermoelectric Generators (TEGs) between ≈298K and ≈623K (ΔT≈325K). Comparisons between the different TEG designs, in terms of the electrical load to TEG electrical resistance ratio (m=RL/RTEG), are simplified thanks to the devised maximum efficiency to temperature gradient (βmax=η/ΔT) metric. Quasi-computational results of βmax show that the collective Seebeck coefficient Bi2Te3–PbTe (α˜) design sustains a higher electrical load in relation to the homogeneous Bi2Te3 and PbTe materials. The average (α¯) and collective (α˜) Seebeck coefficient Bi2Te3–PbTe configurations, in comparison to Bi2Te3 and PbTe, exhibit a considerably higher (60–68%) source and sink thermal resistance matching (ΘTEG=ΘHx). The proposed segmented Bi2Te3–PbTe (α˜) TEG yields a peak efficiency of 5.29% for a ΔT of 324.6K.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2012.07.030</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2013-02, Vol.66, p.165-172 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671451156 |
source | ScienceDirect Freedom Collection |
subjects | Analytical model Applied sciences Coefficients Computational efficiency Computational model Computing time Efficiency Energy Exact sciences and technology Information technology Intermetallics Lead base alloys Lead tellurides Segmented Temperature Thermoelectric generator Thermoelectric generators |
title | Designing high efficiency segmented thermoelectric generators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20high%20efficiency%20segmented%20thermoelectric%20generators&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Hadjistassou,%20Constantinos&rft.date=2013-02-01&rft.volume=66&rft.spage=165&rft.epage=172&rft.pages=165-172&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2012.07.030&rft_dat=%3Cproquest_cross%3E1348487993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-9a270d5fc1af0239b77b1174489b2fe2fc63fee99b88ad20afc6462d520179673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1348487993&rft_id=info:pmid/&rfr_iscdi=true |