Loading…

MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer

Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2013-06, Vol.38 (19), p.8011-8021
Main Authors: Mozalev, Alexander, Calavia, Raul, Vázquez, Rosa M., Gràcia, Isabel, Cané, Carles, Correig, Xavier, Vilanova, Xavier, Gispert-Guirado, Francesc, Hubálek, Jaromír, Llobet, Eduard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3
cites cdi_FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3
container_end_page 8021
container_issue 19
container_start_page 8011
container_title International journal of hydrogen energy
container_volume 38
creator Mozalev, Alexander
Calavia, Raul
Vázquez, Rosa M.
Gràcia, Isabel
Cané, Carles
Correig, Xavier
Vilanova, Xavier
Gispert-Guirado, Francesc
Hubálek, Jaromír
Llobet, Eduard
description Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3 layer as the sensing material. The morphology–structure–property relationship for the nanostructured sensing layer was determined by scanning electron microscopy, X-ray diffraction, and through systematically investigating the sensor performance at various H2 concentrations (5–1000 ppm) and operating temperatures (20–350 °C). The sensors showed superior sensitivity to hydrogen gas, with the lowest detection limit ever reported for WO3 semiconductors (5 ppm), the fast response and recovery times (2–3 min), and the best sensitivity at 150 °C, which was 100 times higher than that of a reference sensor having a smooth WO3 active film. The technology developed enables high-volume, low-cost, and low-power sensor-on-a-chip solution for a hydrogen-based energy economy where the use of highly sensitive and low-power-consuming devices is encouraged. [Display omitted] •Nanoporous WO3 semiconductor film was grown by sputtering over anodic alumina template.•The film was integrated into MEMS microhotplate platform for gas-sensing application.•The sensors show superior sensitivity to H2 at 150 °C with 5 ppm detection limit.•The technology enables high-volume, low-cost, and low-power sensor-on-a-chip solution.
doi_str_mv 10.1016/j.ijhydene.2013.04.063
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671456004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319913009567</els_id><sourcerecordid>1671456004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3</originalsourceid><addsrcrecordid>eNqFkE9v1DAQxS0EEkvhK6BckLg4-F_s5AaqSovUqgeoerQcZ7zrVdYOtlNp--nxagtXTiPNvPdm5ofQR0paSqj8sm_9fnecIEDLCOUtES2R_BXa0F4NmItevUYbwiXBnA7DW_Qu5z0hVBExbNDz3dXdT3zwNsVdLMtsCuDRZJiaGpniFkKzNbnJEHJMzVr87J992DZlB00wIeaSVlvWVA1LTHHNuDYnb7GZ14MPBud1qYNS54_3vDG2-CdoZnOE9B69cWbO8OGlXqCH71e_Lm_w7f31j8tvt9hy1RXshOgYG8kwMuqGzg2WMidh7Olk5WiVIlTIqWdcmZ6YHpTrOsYHw5kAR7jlF-jzOXdJ8fcKueiDzxbm2QSoB2sqFRWdJERUqTxLK46cEzi9JH8w6agp0SfYeq__wtYn2JoIXWFX46eXHSZbM7tkgvX5n5spITvBTrqvZx3Uh588JJ2th2Bh8gls0VP0_1v1B5zTmzE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671456004</pqid></control><display><type>article</type><title>MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer</title><source>ScienceDirect Journals</source><creator>Mozalev, Alexander ; Calavia, Raul ; Vázquez, Rosa M. ; Gràcia, Isabel ; Cané, Carles ; Correig, Xavier ; Vilanova, Xavier ; Gispert-Guirado, Francesc ; Hubálek, Jaromír ; Llobet, Eduard</creator><creatorcontrib>Mozalev, Alexander ; Calavia, Raul ; Vázquez, Rosa M. ; Gràcia, Isabel ; Cané, Carles ; Correig, Xavier ; Vilanova, Xavier ; Gispert-Guirado, Francesc ; Hubálek, Jaromír ; Llobet, Eduard</creatorcontrib><description>Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3 layer as the sensing material. The morphology–structure–property relationship for the nanostructured sensing layer was determined by scanning electron microscopy, X-ray diffraction, and through systematically investigating the sensor performance at various H2 concentrations (5–1000 ppm) and operating temperatures (20–350 °C). The sensors showed superior sensitivity to hydrogen gas, with the lowest detection limit ever reported for WO3 semiconductors (5 ppm), the fast response and recovery times (2–3 min), and the best sensitivity at 150 °C, which was 100 times higher than that of a reference sensor having a smooth WO3 active film. The technology developed enables high-volume, low-cost, and low-power sensor-on-a-chip solution for a hydrogen-based energy economy where the use of highly sensitive and low-power-consuming devices is encouraged. [Display omitted] •Nanoporous WO3 semiconductor film was grown by sputtering over anodic alumina template.•The film was integrated into MEMS microhotplate platform for gas-sensing application.•The sensors show superior sensitivity to H2 at 150 °C with 5 ppm detection limit.•The technology enables high-volume, low-cost, and low-power sensor-on-a-chip solution.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.04.063</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Detection ; Economics ; Energy ; Exact sciences and technology ; Fuels ; Gas sensor ; Hydrogen ; Hydrogen detection ; Hydrogen-based energy ; Microhotplate ; Nanostructure ; Operating temperature ; Porous anodic alumina ; Semiconductors ; Sensors ; Tungsten oxides ; Tungsten trioxide</subject><ispartof>International journal of hydrogen energy, 2013-06, Vol.38 (19), p.8011-8021</ispartof><rights>2013 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3</citedby><cites>FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27465423$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mozalev, Alexander</creatorcontrib><creatorcontrib>Calavia, Raul</creatorcontrib><creatorcontrib>Vázquez, Rosa M.</creatorcontrib><creatorcontrib>Gràcia, Isabel</creatorcontrib><creatorcontrib>Cané, Carles</creatorcontrib><creatorcontrib>Correig, Xavier</creatorcontrib><creatorcontrib>Vilanova, Xavier</creatorcontrib><creatorcontrib>Gispert-Guirado, Francesc</creatorcontrib><creatorcontrib>Hubálek, Jaromír</creatorcontrib><creatorcontrib>Llobet, Eduard</creatorcontrib><title>MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer</title><title>International journal of hydrogen energy</title><description>Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3 layer as the sensing material. The morphology–structure–property relationship for the nanostructured sensing layer was determined by scanning electron microscopy, X-ray diffraction, and through systematically investigating the sensor performance at various H2 concentrations (5–1000 ppm) and operating temperatures (20–350 °C). The sensors showed superior sensitivity to hydrogen gas, with the lowest detection limit ever reported for WO3 semiconductors (5 ppm), the fast response and recovery times (2–3 min), and the best sensitivity at 150 °C, which was 100 times higher than that of a reference sensor having a smooth WO3 active film. The technology developed enables high-volume, low-cost, and low-power sensor-on-a-chip solution for a hydrogen-based energy economy where the use of highly sensitive and low-power-consuming devices is encouraged. [Display omitted] •Nanoporous WO3 semiconductor film was grown by sputtering over anodic alumina template.•The film was integrated into MEMS microhotplate platform for gas-sensing application.•The sensors show superior sensitivity to H2 at 150 °C with 5 ppm detection limit.•The technology enables high-volume, low-cost, and low-power sensor-on-a-chip solution.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Detection</subject><subject>Economics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Gas sensor</subject><subject>Hydrogen</subject><subject>Hydrogen detection</subject><subject>Hydrogen-based energy</subject><subject>Microhotplate</subject><subject>Nanostructure</subject><subject>Operating temperature</subject><subject>Porous anodic alumina</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Tungsten oxides</subject><subject>Tungsten trioxide</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v1DAQxS0EEkvhK6BckLg4-F_s5AaqSovUqgeoerQcZ7zrVdYOtlNp--nxagtXTiPNvPdm5ofQR0paSqj8sm_9fnecIEDLCOUtES2R_BXa0F4NmItevUYbwiXBnA7DW_Qu5z0hVBExbNDz3dXdT3zwNsVdLMtsCuDRZJiaGpniFkKzNbnJEHJMzVr87J992DZlB00wIeaSVlvWVA1LTHHNuDYnb7GZ14MPBud1qYNS54_3vDG2-CdoZnOE9B69cWbO8OGlXqCH71e_Lm_w7f31j8tvt9hy1RXshOgYG8kwMuqGzg2WMidh7Olk5WiVIlTIqWdcmZ6YHpTrOsYHw5kAR7jlF-jzOXdJ8fcKueiDzxbm2QSoB2sqFRWdJERUqTxLK46cEzi9JH8w6agp0SfYeq__wtYn2JoIXWFX46eXHSZbM7tkgvX5n5spITvBTrqvZx3Uh588JJ2th2Bh8gls0VP0_1v1B5zTmzE</recordid><startdate>20130627</startdate><enddate>20130627</enddate><creator>Mozalev, Alexander</creator><creator>Calavia, Raul</creator><creator>Vázquez, Rosa M.</creator><creator>Gràcia, Isabel</creator><creator>Cané, Carles</creator><creator>Correig, Xavier</creator><creator>Vilanova, Xavier</creator><creator>Gispert-Guirado, Francesc</creator><creator>Hubálek, Jaromír</creator><creator>Llobet, Eduard</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130627</creationdate><title>MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer</title><author>Mozalev, Alexander ; Calavia, Raul ; Vázquez, Rosa M. ; Gràcia, Isabel ; Cané, Carles ; Correig, Xavier ; Vilanova, Xavier ; Gispert-Guirado, Francesc ; Hubálek, Jaromír ; Llobet, Eduard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Detection</topic><topic>Economics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Gas sensor</topic><topic>Hydrogen</topic><topic>Hydrogen detection</topic><topic>Hydrogen-based energy</topic><topic>Microhotplate</topic><topic>Nanostructure</topic><topic>Operating temperature</topic><topic>Porous anodic alumina</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Tungsten oxides</topic><topic>Tungsten trioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mozalev, Alexander</creatorcontrib><creatorcontrib>Calavia, Raul</creatorcontrib><creatorcontrib>Vázquez, Rosa M.</creatorcontrib><creatorcontrib>Gràcia, Isabel</creatorcontrib><creatorcontrib>Cané, Carles</creatorcontrib><creatorcontrib>Correig, Xavier</creatorcontrib><creatorcontrib>Vilanova, Xavier</creatorcontrib><creatorcontrib>Gispert-Guirado, Francesc</creatorcontrib><creatorcontrib>Hubálek, Jaromír</creatorcontrib><creatorcontrib>Llobet, Eduard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mozalev, Alexander</au><au>Calavia, Raul</au><au>Vázquez, Rosa M.</au><au>Gràcia, Isabel</au><au>Cané, Carles</au><au>Correig, Xavier</au><au>Vilanova, Xavier</au><au>Gispert-Guirado, Francesc</au><au>Hubálek, Jaromír</au><au>Llobet, Eduard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2013-06-27</date><risdate>2013</risdate><volume>38</volume><issue>19</issue><spage>8011</spage><epage>8021</epage><pages>8011-8021</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3 layer as the sensing material. The morphology–structure–property relationship for the nanostructured sensing layer was determined by scanning electron microscopy, X-ray diffraction, and through systematically investigating the sensor performance at various H2 concentrations (5–1000 ppm) and operating temperatures (20–350 °C). The sensors showed superior sensitivity to hydrogen gas, with the lowest detection limit ever reported for WO3 semiconductors (5 ppm), the fast response and recovery times (2–3 min), and the best sensitivity at 150 °C, which was 100 times higher than that of a reference sensor having a smooth WO3 active film. The technology developed enables high-volume, low-cost, and low-power sensor-on-a-chip solution for a hydrogen-based energy economy where the use of highly sensitive and low-power-consuming devices is encouraged. [Display omitted] •Nanoporous WO3 semiconductor film was grown by sputtering over anodic alumina template.•The film was integrated into MEMS microhotplate platform for gas-sensing application.•The sensors show superior sensitivity to H2 at 150 °C with 5 ppm detection limit.•The technology enables high-volume, low-cost, and low-power sensor-on-a-chip solution.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2013.04.063</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2013-06, Vol.38 (19), p.8011-8021
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1671456004
source ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Applied sciences
Detection
Economics
Energy
Exact sciences and technology
Fuels
Gas sensor
Hydrogen
Hydrogen detection
Hydrogen-based energy
Microhotplate
Nanostructure
Operating temperature
Porous anodic alumina
Semiconductors
Sensors
Tungsten oxides
Tungsten trioxide
title MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MEMS-microhotplate-based%20hydrogen%20gas%20sensor%20utilizing%20the%20nanostructured%20porous-anodic-alumina-supported%20WO3%20active%20layer&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Mozalev,%20Alexander&rft.date=2013-06-27&rft.volume=38&rft.issue=19&rft.spage=8011&rft.epage=8021&rft.pages=8011-8021&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.04.063&rft_dat=%3Cproquest_cross%3E1671456004%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671456004&rft_id=info:pmid/&rfr_iscdi=true