Loading…
MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer
Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3...
Saved in:
Published in: | International journal of hydrogen energy 2013-06, Vol.38 (19), p.8011-8021 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3 |
container_end_page | 8021 |
container_issue | 19 |
container_start_page | 8011 |
container_title | International journal of hydrogen energy |
container_volume | 38 |
creator | Mozalev, Alexander Calavia, Raul Vázquez, Rosa M. Gràcia, Isabel Cané, Carles Correig, Xavier Vilanova, Xavier Gispert-Guirado, Francesc Hubálek, Jaromír Llobet, Eduard |
description | Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3 layer as the sensing material. The morphology–structure–property relationship for the nanostructured sensing layer was determined by scanning electron microscopy, X-ray diffraction, and through systematically investigating the sensor performance at various H2 concentrations (5–1000 ppm) and operating temperatures (20–350 °C). The sensors showed superior sensitivity to hydrogen gas, with the lowest detection limit ever reported for WO3 semiconductors (5 ppm), the fast response and recovery times (2–3 min), and the best sensitivity at 150 °C, which was 100 times higher than that of a reference sensor having a smooth WO3 active film. The technology developed enables high-volume, low-cost, and low-power sensor-on-a-chip solution for a hydrogen-based energy economy where the use of highly sensitive and low-power-consuming devices is encouraged.
[Display omitted]
•Nanoporous WO3 semiconductor film was grown by sputtering over anodic alumina template.•The film was integrated into MEMS microhotplate platform for gas-sensing application.•The sensors show superior sensitivity to H2 at 150 °C with 5 ppm detection limit.•The technology enables high-volume, low-cost, and low-power sensor-on-a-chip solution. |
doi_str_mv | 10.1016/j.ijhydene.2013.04.063 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671456004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319913009567</els_id><sourcerecordid>1671456004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3</originalsourceid><addsrcrecordid>eNqFkE9v1DAQxS0EEkvhK6BckLg4-F_s5AaqSovUqgeoerQcZ7zrVdYOtlNp--nxagtXTiPNvPdm5ofQR0paSqj8sm_9fnecIEDLCOUtES2R_BXa0F4NmItevUYbwiXBnA7DW_Qu5z0hVBExbNDz3dXdT3zwNsVdLMtsCuDRZJiaGpniFkKzNbnJEHJMzVr87J992DZlB00wIeaSVlvWVA1LTHHNuDYnb7GZ14MPBud1qYNS54_3vDG2-CdoZnOE9B69cWbO8OGlXqCH71e_Lm_w7f31j8tvt9hy1RXshOgYG8kwMuqGzg2WMidh7Olk5WiVIlTIqWdcmZ6YHpTrOsYHw5kAR7jlF-jzOXdJ8fcKueiDzxbm2QSoB2sqFRWdJERUqTxLK46cEzi9JH8w6agp0SfYeq__wtYn2JoIXWFX46eXHSZbM7tkgvX5n5spITvBTrqvZx3Uh588JJ2th2Bh8gls0VP0_1v1B5zTmzE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671456004</pqid></control><display><type>article</type><title>MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer</title><source>ScienceDirect Journals</source><creator>Mozalev, Alexander ; Calavia, Raul ; Vázquez, Rosa M. ; Gràcia, Isabel ; Cané, Carles ; Correig, Xavier ; Vilanova, Xavier ; Gispert-Guirado, Francesc ; Hubálek, Jaromír ; Llobet, Eduard</creator><creatorcontrib>Mozalev, Alexander ; Calavia, Raul ; Vázquez, Rosa M. ; Gràcia, Isabel ; Cané, Carles ; Correig, Xavier ; Vilanova, Xavier ; Gispert-Guirado, Francesc ; Hubálek, Jaromír ; Llobet, Eduard</creatorcontrib><description>Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3 layer as the sensing material. The morphology–structure–property relationship for the nanostructured sensing layer was determined by scanning electron microscopy, X-ray diffraction, and through systematically investigating the sensor performance at various H2 concentrations (5–1000 ppm) and operating temperatures (20–350 °C). The sensors showed superior sensitivity to hydrogen gas, with the lowest detection limit ever reported for WO3 semiconductors (5 ppm), the fast response and recovery times (2–3 min), and the best sensitivity at 150 °C, which was 100 times higher than that of a reference sensor having a smooth WO3 active film. The technology developed enables high-volume, low-cost, and low-power sensor-on-a-chip solution for a hydrogen-based energy economy where the use of highly sensitive and low-power-consuming devices is encouraged.
[Display omitted]
•Nanoporous WO3 semiconductor film was grown by sputtering over anodic alumina template.•The film was integrated into MEMS microhotplate platform for gas-sensing application.•The sensors show superior sensitivity to H2 at 150 °C with 5 ppm detection limit.•The technology enables high-volume, low-cost, and low-power sensor-on-a-chip solution.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.04.063</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Detection ; Economics ; Energy ; Exact sciences and technology ; Fuels ; Gas sensor ; Hydrogen ; Hydrogen detection ; Hydrogen-based energy ; Microhotplate ; Nanostructure ; Operating temperature ; Porous anodic alumina ; Semiconductors ; Sensors ; Tungsten oxides ; Tungsten trioxide</subject><ispartof>International journal of hydrogen energy, 2013-06, Vol.38 (19), p.8011-8021</ispartof><rights>2013 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3</citedby><cites>FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27465423$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mozalev, Alexander</creatorcontrib><creatorcontrib>Calavia, Raul</creatorcontrib><creatorcontrib>Vázquez, Rosa M.</creatorcontrib><creatorcontrib>Gràcia, Isabel</creatorcontrib><creatorcontrib>Cané, Carles</creatorcontrib><creatorcontrib>Correig, Xavier</creatorcontrib><creatorcontrib>Vilanova, Xavier</creatorcontrib><creatorcontrib>Gispert-Guirado, Francesc</creatorcontrib><creatorcontrib>Hubálek, Jaromír</creatorcontrib><creatorcontrib>Llobet, Eduard</creatorcontrib><title>MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer</title><title>International journal of hydrogen energy</title><description>Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3 layer as the sensing material. The morphology–structure–property relationship for the nanostructured sensing layer was determined by scanning electron microscopy, X-ray diffraction, and through systematically investigating the sensor performance at various H2 concentrations (5–1000 ppm) and operating temperatures (20–350 °C). The sensors showed superior sensitivity to hydrogen gas, with the lowest detection limit ever reported for WO3 semiconductors (5 ppm), the fast response and recovery times (2–3 min), and the best sensitivity at 150 °C, which was 100 times higher than that of a reference sensor having a smooth WO3 active film. The technology developed enables high-volume, low-cost, and low-power sensor-on-a-chip solution for a hydrogen-based energy economy where the use of highly sensitive and low-power-consuming devices is encouraged.
[Display omitted]
•Nanoporous WO3 semiconductor film was grown by sputtering over anodic alumina template.•The film was integrated into MEMS microhotplate platform for gas-sensing application.•The sensors show superior sensitivity to H2 at 150 °C with 5 ppm detection limit.•The technology enables high-volume, low-cost, and low-power sensor-on-a-chip solution.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Detection</subject><subject>Economics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Gas sensor</subject><subject>Hydrogen</subject><subject>Hydrogen detection</subject><subject>Hydrogen-based energy</subject><subject>Microhotplate</subject><subject>Nanostructure</subject><subject>Operating temperature</subject><subject>Porous anodic alumina</subject><subject>Semiconductors</subject><subject>Sensors</subject><subject>Tungsten oxides</subject><subject>Tungsten trioxide</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9v1DAQxS0EEkvhK6BckLg4-F_s5AaqSovUqgeoerQcZ7zrVdYOtlNp--nxagtXTiPNvPdm5ofQR0paSqj8sm_9fnecIEDLCOUtES2R_BXa0F4NmItevUYbwiXBnA7DW_Qu5z0hVBExbNDz3dXdT3zwNsVdLMtsCuDRZJiaGpniFkKzNbnJEHJMzVr87J992DZlB00wIeaSVlvWVA1LTHHNuDYnb7GZ14MPBud1qYNS54_3vDG2-CdoZnOE9B69cWbO8OGlXqCH71e_Lm_w7f31j8tvt9hy1RXshOgYG8kwMuqGzg2WMidh7Olk5WiVIlTIqWdcmZ6YHpTrOsYHw5kAR7jlF-jzOXdJ8fcKueiDzxbm2QSoB2sqFRWdJERUqTxLK46cEzi9JH8w6agp0SfYeq__wtYn2JoIXWFX46eXHSZbM7tkgvX5n5spITvBTrqvZx3Uh588JJ2th2Bh8gls0VP0_1v1B5zTmzE</recordid><startdate>20130627</startdate><enddate>20130627</enddate><creator>Mozalev, Alexander</creator><creator>Calavia, Raul</creator><creator>Vázquez, Rosa M.</creator><creator>Gràcia, Isabel</creator><creator>Cané, Carles</creator><creator>Correig, Xavier</creator><creator>Vilanova, Xavier</creator><creator>Gispert-Guirado, Francesc</creator><creator>Hubálek, Jaromír</creator><creator>Llobet, Eduard</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130627</creationdate><title>MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer</title><author>Mozalev, Alexander ; Calavia, Raul ; Vázquez, Rosa M. ; Gràcia, Isabel ; Cané, Carles ; Correig, Xavier ; Vilanova, Xavier ; Gispert-Guirado, Francesc ; Hubálek, Jaromír ; Llobet, Eduard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Detection</topic><topic>Economics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Gas sensor</topic><topic>Hydrogen</topic><topic>Hydrogen detection</topic><topic>Hydrogen-based energy</topic><topic>Microhotplate</topic><topic>Nanostructure</topic><topic>Operating temperature</topic><topic>Porous anodic alumina</topic><topic>Semiconductors</topic><topic>Sensors</topic><topic>Tungsten oxides</topic><topic>Tungsten trioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mozalev, Alexander</creatorcontrib><creatorcontrib>Calavia, Raul</creatorcontrib><creatorcontrib>Vázquez, Rosa M.</creatorcontrib><creatorcontrib>Gràcia, Isabel</creatorcontrib><creatorcontrib>Cané, Carles</creatorcontrib><creatorcontrib>Correig, Xavier</creatorcontrib><creatorcontrib>Vilanova, Xavier</creatorcontrib><creatorcontrib>Gispert-Guirado, Francesc</creatorcontrib><creatorcontrib>Hubálek, Jaromír</creatorcontrib><creatorcontrib>Llobet, Eduard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mozalev, Alexander</au><au>Calavia, Raul</au><au>Vázquez, Rosa M.</au><au>Gràcia, Isabel</au><au>Cané, Carles</au><au>Correig, Xavier</au><au>Vilanova, Xavier</au><au>Gispert-Guirado, Francesc</au><au>Hubálek, Jaromír</au><au>Llobet, Eduard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2013-06-27</date><risdate>2013</risdate><volume>38</volume><issue>19</issue><spage>8011</spage><epage>8021</epage><pages>8011-8021</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Practical microsensors for fast, highly sensitive hydrogen gas detection were fabricated by combining silicon integral technology for MEMS microhotplate platform with newly developed technological, electrical, and electrolytic conditions for forming nanostructured porous-anodic-alumina-templated WO3 layer as the sensing material. The morphology–structure–property relationship for the nanostructured sensing layer was determined by scanning electron microscopy, X-ray diffraction, and through systematically investigating the sensor performance at various H2 concentrations (5–1000 ppm) and operating temperatures (20–350 °C). The sensors showed superior sensitivity to hydrogen gas, with the lowest detection limit ever reported for WO3 semiconductors (5 ppm), the fast response and recovery times (2–3 min), and the best sensitivity at 150 °C, which was 100 times higher than that of a reference sensor having a smooth WO3 active film. The technology developed enables high-volume, low-cost, and low-power sensor-on-a-chip solution for a hydrogen-based energy economy where the use of highly sensitive and low-power-consuming devices is encouraged.
[Display omitted]
•Nanoporous WO3 semiconductor film was grown by sputtering over anodic alumina template.•The film was integrated into MEMS microhotplate platform for gas-sensing application.•The sensors show superior sensitivity to H2 at 150 °C with 5 ppm detection limit.•The technology enables high-volume, low-cost, and low-power sensor-on-a-chip solution.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2013.04.063</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2013-06, Vol.38 (19), p.8011-8021 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671456004 |
source | ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Applied sciences Detection Economics Energy Exact sciences and technology Fuels Gas sensor Hydrogen Hydrogen detection Hydrogen-based energy Microhotplate Nanostructure Operating temperature Porous anodic alumina Semiconductors Sensors Tungsten oxides Tungsten trioxide |
title | MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MEMS-microhotplate-based%20hydrogen%20gas%20sensor%20utilizing%20the%20nanostructured%20porous-anodic-alumina-supported%20WO3%20active%20layer&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Mozalev,%20Alexander&rft.date=2013-06-27&rft.volume=38&rft.issue=19&rft.spage=8011&rft.epage=8021&rft.pages=8011-8021&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.04.063&rft_dat=%3Cproquest_cross%3E1671456004%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-f44522b09b21f95f9c12f6eb81dc6bc770146d8237a80a8e7f55239a324ef03c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671456004&rft_id=info:pmid/&rfr_iscdi=true |