Loading…

Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations

Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. T...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2012-05, Vol.37 (9), p.8033-8042
Main Authors: Hadidi, K., Norby, T., Løvvik, O.M., Gunnæs, A.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583
cites cdi_FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583
container_end_page 8042
container_issue 9
container_start_page 8033
container_title International journal of hydrogen energy
container_volume 37
creator Hadidi, K.
Norby, T.
Løvvik, O.M.
Gunnæs, A.E.
description Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. The hydrogen interstitials were found to be significantly higher stable in the LN part of the interface than in bulk LN. Also, the potential energy curve of hydrogen diffusion from Ni into LN exhibited a deep well of around 2eV, located in the gap region between two components. The stability of H atom in the gap region and interfacial layers of LN is explained by metal-induced gap states and indicates that there will be an accumulation of hydrogen in this area. It was shown that hydrogen is ionized when enters from Ni to the LN interfacial layer, approaching to the O atoms and that the electron lost from hydrogen resides in the interface states, located in the band gap of LN. ► Calculating Schottky barrier height at the interface region. ► Analysis of electronic structure of the LaNbO4/Ni interface. ► The potential energy curve for hydrogen interstitials at the interfacial region. ► Presenting the ionization mechanism of the H atom in the interfacial region.
doi_str_mv 10.1016/j.ijhydene.2011.11.032
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671456959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911025304</els_id><sourcerecordid>1671456959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWC9_QfIi-LJrskn28qZ4h2JfKvgW0snEZtnu1mQr9N8bafVVGBhmOGcO8xFywVnOGS-v29y3y63FHvOCcZ6nYqI4IBNeV00mZF0dkgkTJcsEb5pjchJjyxivmGwm5P15a8PwgT1N_vCBo4dITW8pLE0a6RhMHx0G6ns6LpG--uupeV3MZFqMGJwBpC4MK3r_OKdgOth0ZvRDH8_IkTNdxPN9PyVvjw_zu-dsOnt6ubudZiCYGjNnlXX1glXQSCa5NAIKVQDYgtUqrc1COlSs4iBBoazBSSyETRNU2KhanJKr3d11GD43GEe98hGw60yPwyZqXlZcqrJRTZKWOymEIcaATq-DX5mw1ZzpH5S61b8o9Q9KnSqhTMbLfYaJ6UeXmICPf-5C1bJkokq6m50O08NfHoOO4LEHtD4gjNoO_r-ob_-CjWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671456959</pqid></control><display><type>article</type><title>Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations</title><source>ScienceDirect Freedom Collection</source><creator>Hadidi, K. ; Norby, T. ; Løvvik, O.M. ; Gunnæs, A.E.</creator><creatorcontrib>Hadidi, K. ; Norby, T. ; Løvvik, O.M. ; Gunnæs, A.E.</creatorcontrib><description>Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. The hydrogen interstitials were found to be significantly higher stable in the LN part of the interface than in bulk LN. Also, the potential energy curve of hydrogen diffusion from Ni into LN exhibited a deep well of around 2eV, located in the gap region between two components. The stability of H atom in the gap region and interfacial layers of LN is explained by metal-induced gap states and indicates that there will be an accumulation of hydrogen in this area. It was shown that hydrogen is ionized when enters from Ni to the LN interfacial layer, approaching to the O atoms and that the electron lost from hydrogen resides in the interface states, located in the band gap of LN. ► Calculating Schottky barrier height at the interface region. ► Analysis of electronic structure of the LaNbO4/Ni interface. ► The potential energy curve for hydrogen interstitials at the interfacial region. ► Presenting the ionization mechanism of the H atom in the interfacial region.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.11.032</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Barriers ; Density functional theory ; DFT ; Diffusion ; Energy ; Exact sciences and technology ; Fuel cell ; Fuels ; Hydrogen ; Interface ; LaNbO4 ; Mathematical analysis ; Nickel ; Phases ; Potential energy ; Simulation</subject><ispartof>International journal of hydrogen energy, 2012-05, Vol.37 (9), p.8033-8042</ispartof><rights>2011 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583</citedby><cites>FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25846037$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hadidi, K.</creatorcontrib><creatorcontrib>Norby, T.</creatorcontrib><creatorcontrib>Løvvik, O.M.</creatorcontrib><creatorcontrib>Gunnæs, A.E.</creatorcontrib><title>Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations</title><title>International journal of hydrogen energy</title><description>Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. The hydrogen interstitials were found to be significantly higher stable in the LN part of the interface than in bulk LN. Also, the potential energy curve of hydrogen diffusion from Ni into LN exhibited a deep well of around 2eV, located in the gap region between two components. The stability of H atom in the gap region and interfacial layers of LN is explained by metal-induced gap states and indicates that there will be an accumulation of hydrogen in this area. It was shown that hydrogen is ionized when enters from Ni to the LN interfacial layer, approaching to the O atoms and that the electron lost from hydrogen resides in the interface states, located in the band gap of LN. ► Calculating Schottky barrier height at the interface region. ► Analysis of electronic structure of the LaNbO4/Ni interface. ► The potential energy curve for hydrogen interstitials at the interfacial region. ► Presenting the ionization mechanism of the H atom in the interfacial region.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Barriers</subject><subject>Density functional theory</subject><subject>DFT</subject><subject>Diffusion</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuel cell</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Interface</subject><subject>LaNbO4</subject><subject>Mathematical analysis</subject><subject>Nickel</subject><subject>Phases</subject><subject>Potential energy</subject><subject>Simulation</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWC9_QfIi-LJrskn28qZ4h2JfKvgW0snEZtnu1mQr9N8bafVVGBhmOGcO8xFywVnOGS-v29y3y63FHvOCcZ6nYqI4IBNeV00mZF0dkgkTJcsEb5pjchJjyxivmGwm5P15a8PwgT1N_vCBo4dITW8pLE0a6RhMHx0G6ns6LpG--uupeV3MZFqMGJwBpC4MK3r_OKdgOth0ZvRDH8_IkTNdxPN9PyVvjw_zu-dsOnt6ubudZiCYGjNnlXX1glXQSCa5NAIKVQDYgtUqrc1COlSs4iBBoazBSSyETRNU2KhanJKr3d11GD43GEe98hGw60yPwyZqXlZcqrJRTZKWOymEIcaATq-DX5mw1ZzpH5S61b8o9Q9KnSqhTMbLfYaJ6UeXmICPf-5C1bJkokq6m50O08NfHoOO4LEHtD4gjNoO_r-ob_-CjWM</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Hadidi, K.</creator><creator>Norby, T.</creator><creator>Løvvik, O.M.</creator><creator>Gunnæs, A.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20120501</creationdate><title>Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations</title><author>Hadidi, K. ; Norby, T. ; Løvvik, O.M. ; Gunnæs, A.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Barriers</topic><topic>Density functional theory</topic><topic>DFT</topic><topic>Diffusion</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuel cell</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Interface</topic><topic>LaNbO4</topic><topic>Mathematical analysis</topic><topic>Nickel</topic><topic>Phases</topic><topic>Potential energy</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadidi, K.</creatorcontrib><creatorcontrib>Norby, T.</creatorcontrib><creatorcontrib>Løvvik, O.M.</creatorcontrib><creatorcontrib>Gunnæs, A.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadidi, K.</au><au>Norby, T.</au><au>Løvvik, O.M.</au><au>Gunnæs, A.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>37</volume><issue>9</issue><spage>8033</spage><epage>8042</epage><pages>8033-8042</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. The hydrogen interstitials were found to be significantly higher stable in the LN part of the interface than in bulk LN. Also, the potential energy curve of hydrogen diffusion from Ni into LN exhibited a deep well of around 2eV, located in the gap region between two components. The stability of H atom in the gap region and interfacial layers of LN is explained by metal-induced gap states and indicates that there will be an accumulation of hydrogen in this area. It was shown that hydrogen is ionized when enters from Ni to the LN interfacial layer, approaching to the O atoms and that the electron lost from hydrogen resides in the interface states, located in the band gap of LN. ► Calculating Schottky barrier height at the interface region. ► Analysis of electronic structure of the LaNbO4/Ni interface. ► The potential energy curve for hydrogen interstitials at the interfacial region. ► Presenting the ionization mechanism of the H atom in the interfacial region.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.11.032</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2012-05, Vol.37 (9), p.8033-8042
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1671456959
source ScienceDirect Freedom Collection
subjects Alternative fuels. Production and utilization
Applied sciences
Barriers
Density functional theory
DFT
Diffusion
Energy
Exact sciences and technology
Fuel cell
Fuels
Hydrogen
Interface
LaNbO4
Mathematical analysis
Nickel
Phases
Potential energy
Simulation
title Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20energetics%20and%20charge%20transfer%20in%20the%20Ni/LaNbO4%20interface%20from%20DFT%20calculations&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Hadidi,%20K.&rft.date=2012-05-01&rft.volume=37&rft.issue=9&rft.spage=8033&rft.epage=8042&rft.pages=8033-8042&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2011.11.032&rft_dat=%3Cproquest_cross%3E1671456959%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671456959&rft_id=info:pmid/&rfr_iscdi=true