Loading…
Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations
Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. T...
Saved in:
Published in: | International journal of hydrogen energy 2012-05, Vol.37 (9), p.8033-8042 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583 |
---|---|
cites | cdi_FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583 |
container_end_page | 8042 |
container_issue | 9 |
container_start_page | 8033 |
container_title | International journal of hydrogen energy |
container_volume | 37 |
creator | Hadidi, K. Norby, T. Løvvik, O.M. Gunnæs, A.E. |
description | Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. The hydrogen interstitials were found to be significantly higher stable in the LN part of the interface than in bulk LN. Also, the potential energy curve of hydrogen diffusion from Ni into LN exhibited a deep well of around 2eV, located in the gap region between two components. The stability of H atom in the gap region and interfacial layers of LN is explained by metal-induced gap states and indicates that there will be an accumulation of hydrogen in this area. It was shown that hydrogen is ionized when enters from Ni to the LN interfacial layer, approaching to the O atoms and that the electron lost from hydrogen resides in the interface states, located in the band gap of LN.
► Calculating Schottky barrier height at the interface region. ► Analysis of electronic structure of the LaNbO4/Ni interface. ► The potential energy curve for hydrogen interstitials at the interfacial region. ► Presenting the ionization mechanism of the H atom in the interfacial region. |
doi_str_mv | 10.1016/j.ijhydene.2011.11.032 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671456959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911025304</els_id><sourcerecordid>1671456959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWC9_QfIi-LJrskn28qZ4h2JfKvgW0snEZtnu1mQr9N8bafVVGBhmOGcO8xFywVnOGS-v29y3y63FHvOCcZ6nYqI4IBNeV00mZF0dkgkTJcsEb5pjchJjyxivmGwm5P15a8PwgT1N_vCBo4dITW8pLE0a6RhMHx0G6ns6LpG--uupeV3MZFqMGJwBpC4MK3r_OKdgOth0ZvRDH8_IkTNdxPN9PyVvjw_zu-dsOnt6ubudZiCYGjNnlXX1glXQSCa5NAIKVQDYgtUqrc1COlSs4iBBoazBSSyETRNU2KhanJKr3d11GD43GEe98hGw60yPwyZqXlZcqrJRTZKWOymEIcaATq-DX5mw1ZzpH5S61b8o9Q9KnSqhTMbLfYaJ6UeXmICPf-5C1bJkokq6m50O08NfHoOO4LEHtD4gjNoO_r-ob_-CjWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671456959</pqid></control><display><type>article</type><title>Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations</title><source>ScienceDirect Freedom Collection</source><creator>Hadidi, K. ; Norby, T. ; Løvvik, O.M. ; Gunnæs, A.E.</creator><creatorcontrib>Hadidi, K. ; Norby, T. ; Løvvik, O.M. ; Gunnæs, A.E.</creatorcontrib><description>Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. The hydrogen interstitials were found to be significantly higher stable in the LN part of the interface than in bulk LN. Also, the potential energy curve of hydrogen diffusion from Ni into LN exhibited a deep well of around 2eV, located in the gap region between two components. The stability of H atom in the gap region and interfacial layers of LN is explained by metal-induced gap states and indicates that there will be an accumulation of hydrogen in this area. It was shown that hydrogen is ionized when enters from Ni to the LN interfacial layer, approaching to the O atoms and that the electron lost from hydrogen resides in the interface states, located in the band gap of LN.
► Calculating Schottky barrier height at the interface region. ► Analysis of electronic structure of the LaNbO4/Ni interface. ► The potential energy curve for hydrogen interstitials at the interfacial region. ► Presenting the ionization mechanism of the H atom in the interfacial region.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.11.032</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Barriers ; Density functional theory ; DFT ; Diffusion ; Energy ; Exact sciences and technology ; Fuel cell ; Fuels ; Hydrogen ; Interface ; LaNbO4 ; Mathematical analysis ; Nickel ; Phases ; Potential energy ; Simulation</subject><ispartof>International journal of hydrogen energy, 2012-05, Vol.37 (9), p.8033-8042</ispartof><rights>2011 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583</citedby><cites>FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25846037$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hadidi, K.</creatorcontrib><creatorcontrib>Norby, T.</creatorcontrib><creatorcontrib>Løvvik, O.M.</creatorcontrib><creatorcontrib>Gunnæs, A.E.</creatorcontrib><title>Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations</title><title>International journal of hydrogen energy</title><description>Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. The hydrogen interstitials were found to be significantly higher stable in the LN part of the interface than in bulk LN. Also, the potential energy curve of hydrogen diffusion from Ni into LN exhibited a deep well of around 2eV, located in the gap region between two components. The stability of H atom in the gap region and interfacial layers of LN is explained by metal-induced gap states and indicates that there will be an accumulation of hydrogen in this area. It was shown that hydrogen is ionized when enters from Ni to the LN interfacial layer, approaching to the O atoms and that the electron lost from hydrogen resides in the interface states, located in the band gap of LN.
► Calculating Schottky barrier height at the interface region. ► Analysis of electronic structure of the LaNbO4/Ni interface. ► The potential energy curve for hydrogen interstitials at the interfacial region. ► Presenting the ionization mechanism of the H atom in the interfacial region.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Barriers</subject><subject>Density functional theory</subject><subject>DFT</subject><subject>Diffusion</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuel cell</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Interface</subject><subject>LaNbO4</subject><subject>Mathematical analysis</subject><subject>Nickel</subject><subject>Phases</subject><subject>Potential energy</subject><subject>Simulation</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWC9_QfIi-LJrskn28qZ4h2JfKvgW0snEZtnu1mQr9N8bafVVGBhmOGcO8xFywVnOGS-v29y3y63FHvOCcZ6nYqI4IBNeV00mZF0dkgkTJcsEb5pjchJjyxivmGwm5P15a8PwgT1N_vCBo4dITW8pLE0a6RhMHx0G6ns6LpG--uupeV3MZFqMGJwBpC4MK3r_OKdgOth0ZvRDH8_IkTNdxPN9PyVvjw_zu-dsOnt6ubudZiCYGjNnlXX1glXQSCa5NAIKVQDYgtUqrc1COlSs4iBBoazBSSyETRNU2KhanJKr3d11GD43GEe98hGw60yPwyZqXlZcqrJRTZKWOymEIcaATq-DX5mw1ZzpH5S61b8o9Q9KnSqhTMbLfYaJ6UeXmICPf-5C1bJkokq6m50O08NfHoOO4LEHtD4gjNoO_r-ob_-CjWM</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Hadidi, K.</creator><creator>Norby, T.</creator><creator>Løvvik, O.M.</creator><creator>Gunnæs, A.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20120501</creationdate><title>Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations</title><author>Hadidi, K. ; Norby, T. ; Løvvik, O.M. ; Gunnæs, A.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Barriers</topic><topic>Density functional theory</topic><topic>DFT</topic><topic>Diffusion</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuel cell</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Interface</topic><topic>LaNbO4</topic><topic>Mathematical analysis</topic><topic>Nickel</topic><topic>Phases</topic><topic>Potential energy</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadidi, K.</creatorcontrib><creatorcontrib>Norby, T.</creatorcontrib><creatorcontrib>Løvvik, O.M.</creatorcontrib><creatorcontrib>Gunnæs, A.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadidi, K.</au><au>Norby, T.</au><au>Løvvik, O.M.</au><au>Gunnæs, A.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012-05-01</date><risdate>2012</risdate><volume>37</volume><issue>9</issue><spage>8033</spage><epage>8042</epage><pages>8033-8042</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>Calculations based on density functional theory have been used to simulate interface structures between the tetragonal and monoclinic phases of LaNbO4 (LN) and Ni. Schottky barrier heights were calculated using the interface electronic structure; they were 3.0 and 1.8eV for p- and n-type barriers. The hydrogen interstitials were found to be significantly higher stable in the LN part of the interface than in bulk LN. Also, the potential energy curve of hydrogen diffusion from Ni into LN exhibited a deep well of around 2eV, located in the gap region between two components. The stability of H atom in the gap region and interfacial layers of LN is explained by metal-induced gap states and indicates that there will be an accumulation of hydrogen in this area. It was shown that hydrogen is ionized when enters from Ni to the LN interfacial layer, approaching to the O atoms and that the electron lost from hydrogen resides in the interface states, located in the band gap of LN.
► Calculating Schottky barrier height at the interface region. ► Analysis of electronic structure of the LaNbO4/Ni interface. ► The potential energy curve for hydrogen interstitials at the interfacial region. ► Presenting the ionization mechanism of the H atom in the interfacial region.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.11.032</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2012-05, Vol.37 (9), p.8033-8042 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671456959 |
source | ScienceDirect Freedom Collection |
subjects | Alternative fuels. Production and utilization Applied sciences Barriers Density functional theory DFT Diffusion Energy Exact sciences and technology Fuel cell Fuels Hydrogen Interface LaNbO4 Mathematical analysis Nickel Phases Potential energy Simulation |
title | Hydrogen energetics and charge transfer in the Ni/LaNbO4 interface from DFT calculations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20energetics%20and%20charge%20transfer%20in%20the%20Ni/LaNbO4%20interface%20from%20DFT%20calculations&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Hadidi,%20K.&rft.date=2012-05-01&rft.volume=37&rft.issue=9&rft.spage=8033&rft.epage=8042&rft.pages=8033-8042&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2011.11.032&rft_dat=%3Cproquest_cross%3E1671456959%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-fd5df8b07c940414a3c252ccd2085b07ab4fe5071c4c5e48cf4e23dc4cc7e9583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671456959&rft_id=info:pmid/&rfr_iscdi=true |