Loading…

River mapping from a flying robot: state estimation, river detection, and obstacle mapping

Accurately mapping the course and vegetation along a river is challenging, since overhanging trees block GPS at ground level and occlude the shore line when viewed from higher altitudes. We present a multimodal perception system for the active exploration and mapping of a river from a small rotorcra...

Full description

Saved in:
Bibliographic Details
Published in:Autonomous robots 2012-08, Vol.33 (1-2), p.189-214
Main Authors: Scherer, Sebastian, Rehder, Joern, Achar, Supreeth, Cover, Hugh, Chambers, Andrew, Nuske, Stephen, Singh, Sanjiv
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-p320t-2ebad5f2f39b19991432b7524a77690f111451ddf085276920d5a45ae5cf25f63
container_end_page 214
container_issue 1-2
container_start_page 189
container_title Autonomous robots
container_volume 33
creator Scherer, Sebastian
Rehder, Joern
Achar, Supreeth
Cover, Hugh
Chambers, Andrew
Nuske, Stephen
Singh, Sanjiv
description Accurately mapping the course and vegetation along a river is challenging, since overhanging trees block GPS at ground level and occlude the shore line when viewed from higher altitudes. We present a multimodal perception system for the active exploration and mapping of a river from a small rotorcraft. We describe three key components that use computer vision, laser scanning, inertial sensing and intermittant GPS to estimate the motion of the rotorcraft, detect the river without a prior map, and create a 3D map of the riverine environment. Our hardware and software approach is cognizant of the need to perform multi-kilometer missions below tree level with size, weight and power constraints. We present experimental results along a 2 km loop of river using a surrogate perception payload. Overall we can build an accurate 3D obstacle map and a 2D map of the river course and width from light onboard sensing.
doi_str_mv 10.1007/s10514-012-9293-0
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671457036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671457036</sourcerecordid><originalsourceid>FETCH-LOGICAL-p320t-2ebad5f2f39b19991432b7524a77690f111451ddf085276920d5a45ae5cf25f63</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMouH78AG8FLx6MziRNs_Emi1-wIIhevIS0TaRL29SkK_jvzVoF8SCehpl55mVmXkKOEM4QQJ5HBIE5BWRUMcUpbJEZCsmpFExukxmkKhVC8V2yF-MKAJQEmJHnh-bNhqwzw9D0L5kLvstM5tr3TRZ86ceLLI5mtJmNY9OZsfH9aRY-h2o72moqmL7OfJnAqrXfYgdkx5k22sOvuE-erq8eF7d0eX9zt7hc0oEzGCmzpamFY46rEpVSmHNWpq1zI2WhwCFiLrCuHczTKYViUAuTC2NF5ZhwBd8nJ5PuEPzrOq2puyZWtm1Nb_06aixkUpDA_4ECR45ziZjQ41_oyq9Dnw7RjAkFfK5Q_UUhpH4hBZeJYhMVh5AeY8NPSm_805N_OvmnN_5p4B9Sh4sB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019367537</pqid></control><display><type>article</type><title>River mapping from a flying robot: state estimation, river detection, and obstacle mapping</title><source>Springer Nature</source><creator>Scherer, Sebastian ; Rehder, Joern ; Achar, Supreeth ; Cover, Hugh ; Chambers, Andrew ; Nuske, Stephen ; Singh, Sanjiv</creator><creatorcontrib>Scherer, Sebastian ; Rehder, Joern ; Achar, Supreeth ; Cover, Hugh ; Chambers, Andrew ; Nuske, Stephen ; Singh, Sanjiv</creatorcontrib><description>Accurately mapping the course and vegetation along a river is challenging, since overhanging trees block GPS at ground level and occlude the shore line when viewed from higher altitudes. We present a multimodal perception system for the active exploration and mapping of a river from a small rotorcraft. We describe three key components that use computer vision, laser scanning, inertial sensing and intermittant GPS to estimate the motion of the rotorcraft, detect the river without a prior map, and create a 3D map of the riverine environment. Our hardware and software approach is cognizant of the need to perform multi-kilometer missions below tree level with size, weight and power constraints. We present experimental results along a 2 km loop of river using a surrogate perception payload. Overall we can build an accurate 3D obstacle map and a 2D map of the river course and width from light onboard sensing.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-012-9293-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Computer Imaging ; Computer vision ; Control ; Engineering ; Geographic information systems ; Global Positioning System ; Ground level ; Inertial sensing devices ; Mapping ; Mechatronics ; Obstacle avoidance ; Obstacles ; Pattern Recognition and Graphics ; Perception ; Rivers ; Robotics ; Robotics and Automation ; Robots ; Rotary wing aircraft ; Satellite navigation systems ; State estimation ; Three dimensional ; Vision</subject><ispartof>Autonomous robots, 2012-08, Vol.33 (1-2), p.189-214</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Autonomous Robots is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p320t-2ebad5f2f39b19991432b7524a77690f111451ddf085276920d5a45ae5cf25f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Scherer, Sebastian</creatorcontrib><creatorcontrib>Rehder, Joern</creatorcontrib><creatorcontrib>Achar, Supreeth</creatorcontrib><creatorcontrib>Cover, Hugh</creatorcontrib><creatorcontrib>Chambers, Andrew</creatorcontrib><creatorcontrib>Nuske, Stephen</creatorcontrib><creatorcontrib>Singh, Sanjiv</creatorcontrib><title>River mapping from a flying robot: state estimation, river detection, and obstacle mapping</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>Accurately mapping the course and vegetation along a river is challenging, since overhanging trees block GPS at ground level and occlude the shore line when viewed from higher altitudes. We present a multimodal perception system for the active exploration and mapping of a river from a small rotorcraft. We describe three key components that use computer vision, laser scanning, inertial sensing and intermittant GPS to estimate the motion of the rotorcraft, detect the river without a prior map, and create a 3D map of the riverine environment. Our hardware and software approach is cognizant of the need to perform multi-kilometer missions below tree level with size, weight and power constraints. We present experimental results along a 2 km loop of river using a surrogate perception payload. Overall we can build an accurate 3D obstacle map and a 2D map of the river course and width from light onboard sensing.</description><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Computer vision</subject><subject>Control</subject><subject>Engineering</subject><subject>Geographic information systems</subject><subject>Global Positioning System</subject><subject>Ground level</subject><subject>Inertial sensing devices</subject><subject>Mapping</subject><subject>Mechatronics</subject><subject>Obstacle avoidance</subject><subject>Obstacles</subject><subject>Pattern Recognition and Graphics</subject><subject>Perception</subject><subject>Rivers</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Rotary wing aircraft</subject><subject>Satellite navigation systems</subject><subject>State estimation</subject><subject>Three dimensional</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMouH78AG8FLx6MziRNs_Emi1-wIIhevIS0TaRL29SkK_jvzVoF8SCehpl55mVmXkKOEM4QQJ5HBIE5BWRUMcUpbJEZCsmpFExukxmkKhVC8V2yF-MKAJQEmJHnh-bNhqwzw9D0L5kLvstM5tr3TRZ86ceLLI5mtJmNY9OZsfH9aRY-h2o72moqmL7OfJnAqrXfYgdkx5k22sOvuE-erq8eF7d0eX9zt7hc0oEzGCmzpamFY46rEpVSmHNWpq1zI2WhwCFiLrCuHczTKYViUAuTC2NF5ZhwBd8nJ5PuEPzrOq2puyZWtm1Nb_06aixkUpDA_4ECR45ziZjQ41_oyq9Dnw7RjAkFfK5Q_UUhpH4hBZeJYhMVh5AeY8NPSm_805N_OvmnN_5p4B9Sh4sB</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Scherer, Sebastian</creator><creator>Rehder, Joern</creator><creator>Achar, Supreeth</creator><creator>Cover, Hugh</creator><creator>Chambers, Andrew</creator><creator>Nuske, Stephen</creator><creator>Singh, Sanjiv</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>20120801</creationdate><title>River mapping from a flying robot: state estimation, river detection, and obstacle mapping</title><author>Scherer, Sebastian ; Rehder, Joern ; Achar, Supreeth ; Cover, Hugh ; Chambers, Andrew ; Nuske, Stephen ; Singh, Sanjiv</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p320t-2ebad5f2f39b19991432b7524a77690f111451ddf085276920d5a45ae5cf25f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Computer vision</topic><topic>Control</topic><topic>Engineering</topic><topic>Geographic information systems</topic><topic>Global Positioning System</topic><topic>Ground level</topic><topic>Inertial sensing devices</topic><topic>Mapping</topic><topic>Mechatronics</topic><topic>Obstacle avoidance</topic><topic>Obstacles</topic><topic>Pattern Recognition and Graphics</topic><topic>Perception</topic><topic>Rivers</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Rotary wing aircraft</topic><topic>Satellite navigation systems</topic><topic>State estimation</topic><topic>Three dimensional</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scherer, Sebastian</creatorcontrib><creatorcontrib>Rehder, Joern</creatorcontrib><creatorcontrib>Achar, Supreeth</creatorcontrib><creatorcontrib>Cover, Hugh</creatorcontrib><creatorcontrib>Chambers, Andrew</creatorcontrib><creatorcontrib>Nuske, Stephen</creatorcontrib><creatorcontrib>Singh, Sanjiv</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scherer, Sebastian</au><au>Rehder, Joern</au><au>Achar, Supreeth</au><au>Cover, Hugh</au><au>Chambers, Andrew</au><au>Nuske, Stephen</au><au>Singh, Sanjiv</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>River mapping from a flying robot: state estimation, river detection, and obstacle mapping</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>33</volume><issue>1-2</issue><spage>189</spage><epage>214</epage><pages>189-214</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>Accurately mapping the course and vegetation along a river is challenging, since overhanging trees block GPS at ground level and occlude the shore line when viewed from higher altitudes. We present a multimodal perception system for the active exploration and mapping of a river from a small rotorcraft. We describe three key components that use computer vision, laser scanning, inertial sensing and intermittant GPS to estimate the motion of the rotorcraft, detect the river without a prior map, and create a 3D map of the riverine environment. Our hardware and software approach is cognizant of the need to perform multi-kilometer missions below tree level with size, weight and power constraints. We present experimental results along a 2 km loop of river using a surrogate perception payload. Overall we can build an accurate 3D obstacle map and a 2D map of the river course and width from light onboard sensing.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10514-012-9293-0</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-5593
ispartof Autonomous robots, 2012-08, Vol.33 (1-2), p.189-214
issn 0929-5593
1573-7527
language eng
recordid cdi_proquest_miscellaneous_1671457036
source Springer Nature
subjects Artificial Intelligence
Computer Imaging
Computer vision
Control
Engineering
Geographic information systems
Global Positioning System
Ground level
Inertial sensing devices
Mapping
Mechatronics
Obstacle avoidance
Obstacles
Pattern Recognition and Graphics
Perception
Rivers
Robotics
Robotics and Automation
Robots
Rotary wing aircraft
Satellite navigation systems
State estimation
Three dimensional
Vision
title River mapping from a flying robot: state estimation, river detection, and obstacle mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=River%20mapping%20from%20a%20flying%20robot:%20state%20estimation,%20river%20detection,%20and%20obstacle%20mapping&rft.jtitle=Autonomous%20robots&rft.au=Scherer,%20Sebastian&rft.date=2012-08-01&rft.volume=33&rft.issue=1-2&rft.spage=189&rft.epage=214&rft.pages=189-214&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-012-9293-0&rft_dat=%3Cproquest_sprin%3E1671457036%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p320t-2ebad5f2f39b19991432b7524a77690f111451ddf085276920d5a45ae5cf25f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019367537&rft_id=info:pmid/&rfr_iscdi=true