Loading…

Deformation image generation for testing a strain measurement algorithm

An optical extensometer was tested using artificially deformed images with a known strain field. A real image series from a tensile test was used to obtain realistic deformation parameters, including spatial and temporal strain characteristics, changes in tonal pixel properties due to deformation, a...

Full description

Saved in:
Bibliographic Details
Published in:Optical Engineering 2008-10, Vol.47 (10), p.107202-1072013
Main Authors: Koljonen, Janne, Alander, Jarmo T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An optical extensometer was tested using artificially deformed images with a known strain field. A real image series from a tensile test was used to obtain realistic deformation parameters, including spatial and temporal strain characteristics, changes in tonal pixel properties due to deformation, and the effect of nonuniform illumination. These parameters are used to artificially deform a real image taken from an object with a random speckle pattern. The signal-to-noise ratio of the resulting artificially deformed images is varied by applying a blurring pillbox filter and additive Gaussian noise to them. The optical extensometer uses digital image correlation to track homologous points of the object, and further to measure strains. The strain measurement algorithm includes a heuristic to dynamically control the template size in image correlation. Furthermore, several other methods to improve the accuracy-complexity ratio of the algorithm exist. The effects of different parameters and heuristics on the accuracy of the algorithm as well as its robustness against blur and noise are studied. Results show that the proposed test method is practical, and the heuristics improve the accuracy and robustness of the algorithm.
ISSN:0091-3286
1560-2303
DOI:10.1117/1.2993319