Loading…
Material and structural response of polymer-matrix fibre-reinforced composites
This paper presents a pressure-dependent three-dimensional constitutive law to predict failure for laminated composites. The nonlinear constitutive response in shear and in the transverse and through-the-thickness directions, which is measured experimentally, is incorporated directly into the model....
Saved in:
Published in: | Journal of composite materials 2012-09, Vol.46 (19-20), p.2313-2341 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-896b56aaccc37d4def312bd6f5bdbe0838d58a16f0c7719fd0b7945474317cab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-896b56aaccc37d4def312bd6f5bdbe0838d58a16f0c7719fd0b7945474317cab3 |
container_end_page | 2341 |
container_issue | 19-20 |
container_start_page | 2313 |
container_title | Journal of composite materials |
container_volume | 46 |
creator | Pinho, ST Darvizeh, R Robinson, P Schuecker, C Camanho, PP |
description | This paper presents a pressure-dependent three-dimensional constitutive law to predict failure for laminated composites. The nonlinear constitutive response in shear and in the transverse and through-the-thickness directions, which is measured experimentally, is incorporated directly into the model. In addition, secant stiffnesses are dependent on the state of hydrostatic pressure and on the general state of strain. The failure criteria distinguish between matrix failure, fibre kinking and fibre tensile failure. In-situ strengths are used for matrix failure. Propagation of failure takes into consideration the fracture energy associated with each failure mode and, for matrix failure, the accumulation of cracks in the plies. A detailed discussion is undertaken of the mismatch between the available experimental data and the physical properties required to characterise the constitutive response up to final failure. The model is employed to make blind predictions of the triaxial failure envelopes and stress–strain curves of all 12 test cases provided by the organisers of the second World-Wide Failure Exercise. |
doi_str_mv | 10.1177/0021998312454478 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671459034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0021998312454478</sage_id><sourcerecordid>1671459034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-896b56aaccc37d4def312bd6f5bdbe0838d58a16f0c7719fd0b7945474317cab3</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMouK7ePfYieIkmm6ZpjrL4BateFLyVNB-SpW3qTAvuf2_LigfB0zDMez_mPULOObviXKlrxlZc61LwVS7zXJUHZMGlYFRp8X5IFvOZzvdjcoK4ZYwpnhcL8vxkBg_RNJnpXIYDjHYYYVrBY5869FkKWZ-aXeuBtmaA-JWFWIOn4GMXEljvMpvaPmEcPJ6So2Aa9Gc_c0ne7m5f1w9083L_uL7ZUCtKPtBSF7UsjLHWCuVy58P0d-2KIGtXe1aK0snS8CIwqxTXwbFa6SmXygVX1tRiSS733B7S5-hxqNqI1jeN6XwaseLFFE9qJvJJyvZSCwkRfKh6iK2BXcVZNVdX_a1uslz80A1a0wQwnY3461sVQkupZzTd69B8-GqbRuim0P9zvwGIKHxC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671459034</pqid></control><display><type>article</type><title>Material and structural response of polymer-matrix fibre-reinforced composites</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Pinho, ST ; Darvizeh, R ; Robinson, P ; Schuecker, C ; Camanho, PP</creator><creatorcontrib>Pinho, ST ; Darvizeh, R ; Robinson, P ; Schuecker, C ; Camanho, PP</creatorcontrib><description>This paper presents a pressure-dependent three-dimensional constitutive law to predict failure for laminated composites. The nonlinear constitutive response in shear and in the transverse and through-the-thickness directions, which is measured experimentally, is incorporated directly into the model. In addition, secant stiffnesses are dependent on the state of hydrostatic pressure and on the general state of strain. The failure criteria distinguish between matrix failure, fibre kinking and fibre tensile failure. In-situ strengths are used for matrix failure. Propagation of failure takes into consideration the fracture energy associated with each failure mode and, for matrix failure, the accumulation of cracks in the plies. A detailed discussion is undertaken of the mismatch between the available experimental data and the physical properties required to characterise the constitutive response up to final failure. The model is employed to make blind predictions of the triaxial failure envelopes and stress–strain curves of all 12 test cases provided by the organisers of the second World-Wide Failure Exercise.</description><identifier>ISSN: 0021-9983</identifier><identifier>EISSN: 1530-793X</identifier><identifier>DOI: 10.1177/0021998312454478</identifier><identifier>CODEN: JCOMBI</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Applied sciences ; Composites ; Crack propagation ; Exact sciences and technology ; Failure ; Fibre ; Forms of application and semi-finished materials ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Mathematical models ; Mechanical properties ; Physical properties ; Physics ; Polymer industry, paints, wood ; Properties and testing ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress strain curves ; Stress-strain relationships ; Structural and continuum mechanics ; Technology of polymers ; Three dimensional</subject><ispartof>Journal of composite materials, 2012-09, Vol.46 (19-20), p.2313-2341</ispartof><rights>The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-896b56aaccc37d4def312bd6f5bdbe0838d58a16f0c7719fd0b7945474317cab3</citedby><cites>FETCH-LOGICAL-c381t-896b56aaccc37d4def312bd6f5bdbe0838d58a16f0c7719fd0b7945474317cab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26395594$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinho, ST</creatorcontrib><creatorcontrib>Darvizeh, R</creatorcontrib><creatorcontrib>Robinson, P</creatorcontrib><creatorcontrib>Schuecker, C</creatorcontrib><creatorcontrib>Camanho, PP</creatorcontrib><title>Material and structural response of polymer-matrix fibre-reinforced composites</title><title>Journal of composite materials</title><description>This paper presents a pressure-dependent three-dimensional constitutive law to predict failure for laminated composites. The nonlinear constitutive response in shear and in the transverse and through-the-thickness directions, which is measured experimentally, is incorporated directly into the model. In addition, secant stiffnesses are dependent on the state of hydrostatic pressure and on the general state of strain. The failure criteria distinguish between matrix failure, fibre kinking and fibre tensile failure. In-situ strengths are used for matrix failure. Propagation of failure takes into consideration the fracture energy associated with each failure mode and, for matrix failure, the accumulation of cracks in the plies. A detailed discussion is undertaken of the mismatch between the available experimental data and the physical properties required to characterise the constitutive response up to final failure. The model is employed to make blind predictions of the triaxial failure envelopes and stress–strain curves of all 12 test cases provided by the organisers of the second World-Wide Failure Exercise.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>Crack propagation</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Fibre</subject><subject>Forms of application and semi-finished materials</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Properties and testing</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress strain curves</subject><subject>Stress-strain relationships</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><subject>Three dimensional</subject><issn>0021-9983</issn><issn>1530-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYMouK7ePfYieIkmm6ZpjrL4BateFLyVNB-SpW3qTAvuf2_LigfB0zDMez_mPULOObviXKlrxlZc61LwVS7zXJUHZMGlYFRp8X5IFvOZzvdjcoK4ZYwpnhcL8vxkBg_RNJnpXIYDjHYYYVrBY5869FkKWZ-aXeuBtmaA-JWFWIOn4GMXEljvMpvaPmEcPJ6So2Aa9Gc_c0ne7m5f1w9083L_uL7ZUCtKPtBSF7UsjLHWCuVy58P0d-2KIGtXe1aK0snS8CIwqxTXwbFa6SmXygVX1tRiSS733B7S5-hxqNqI1jeN6XwaseLFFE9qJvJJyvZSCwkRfKh6iK2BXcVZNVdX_a1uslz80A1a0wQwnY3461sVQkupZzTd69B8-GqbRuim0P9zvwGIKHxC</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Pinho, ST</creator><creator>Darvizeh, R</creator><creator>Robinson, P</creator><creator>Schuecker, C</creator><creator>Camanho, PP</creator><general>SAGE Publications</general><general>Sage Publications</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120901</creationdate><title>Material and structural response of polymer-matrix fibre-reinforced composites</title><author>Pinho, ST ; Darvizeh, R ; Robinson, P ; Schuecker, C ; Camanho, PP</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-896b56aaccc37d4def312bd6f5bdbe0838d58a16f0c7719fd0b7945474317cab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>Crack propagation</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Fibre</topic><topic>Forms of application and semi-finished materials</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Properties and testing</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress strain curves</topic><topic>Stress-strain relationships</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinho, ST</creatorcontrib><creatorcontrib>Darvizeh, R</creatorcontrib><creatorcontrib>Robinson, P</creatorcontrib><creatorcontrib>Schuecker, C</creatorcontrib><creatorcontrib>Camanho, PP</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinho, ST</au><au>Darvizeh, R</au><au>Robinson, P</au><au>Schuecker, C</au><au>Camanho, PP</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material and structural response of polymer-matrix fibre-reinforced composites</atitle><jtitle>Journal of composite materials</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>46</volume><issue>19-20</issue><spage>2313</spage><epage>2341</epage><pages>2313-2341</pages><issn>0021-9983</issn><eissn>1530-793X</eissn><coden>JCOMBI</coden><abstract>This paper presents a pressure-dependent three-dimensional constitutive law to predict failure for laminated composites. The nonlinear constitutive response in shear and in the transverse and through-the-thickness directions, which is measured experimentally, is incorporated directly into the model. In addition, secant stiffnesses are dependent on the state of hydrostatic pressure and on the general state of strain. The failure criteria distinguish between matrix failure, fibre kinking and fibre tensile failure. In-situ strengths are used for matrix failure. Propagation of failure takes into consideration the fracture energy associated with each failure mode and, for matrix failure, the accumulation of cracks in the plies. A detailed discussion is undertaken of the mismatch between the available experimental data and the physical properties required to characterise the constitutive response up to final failure. The model is employed to make blind predictions of the triaxial failure envelopes and stress–strain curves of all 12 test cases provided by the organisers of the second World-Wide Failure Exercise.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0021998312454478</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9983 |
ispartof | Journal of composite materials, 2012-09, Vol.46 (19-20), p.2313-2341 |
issn | 0021-9983 1530-793X |
language | eng |
recordid | cdi_proquest_miscellaneous_1671459034 |
source | SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list) |
subjects | Applied sciences Composites Crack propagation Exact sciences and technology Failure Fibre Forms of application and semi-finished materials Fracture mechanics Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Mathematical models Mechanical properties Physical properties Physics Polymer industry, paints, wood Properties and testing Solid mechanics Static elasticity (thermoelasticity...) Stress strain curves Stress-strain relationships Structural and continuum mechanics Technology of polymers Three dimensional |
title | Material and structural response of polymer-matrix fibre-reinforced composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20and%20structural%20response%20of%20polymer-matrix%20fibre-reinforced%20composites&rft.jtitle=Journal%20of%20composite%20materials&rft.au=Pinho,%20ST&rft.date=2012-09-01&rft.volume=46&rft.issue=19-20&rft.spage=2313&rft.epage=2341&rft.pages=2313-2341&rft.issn=0021-9983&rft.eissn=1530-793X&rft.coden=JCOMBI&rft_id=info:doi/10.1177/0021998312454478&rft_dat=%3Cproquest_cross%3E1671459034%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-896b56aaccc37d4def312bd6f5bdbe0838d58a16f0c7719fd0b7945474317cab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671459034&rft_id=info:pmid/&rft_sage_id=10.1177_0021998312454478&rfr_iscdi=true |