Loading…

A Salience-based Quality Metric for Visualization

Salience detection is a principle mechanism to facilitate visual attention. A good visualization guides the observer's attention to the relevant aspects of the representation. Hence, the distribution of salience over a visualization image is an essential measure of the quality of the visualizat...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum 2010-06, Vol.29 (3), p.1183-1192
Main Authors: Jänicke, H., Chen, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4777-6c57a6531eb062ac20f3ee68748e39bdf4a2bb4f50130614982f6dfd72f135e03
cites cdi_FETCH-LOGICAL-c4777-6c57a6531eb062ac20f3ee68748e39bdf4a2bb4f50130614982f6dfd72f135e03
container_end_page 1192
container_issue 3
container_start_page 1183
container_title Computer graphics forum
container_volume 29
creator Jänicke, H.
Chen, M.
description Salience detection is a principle mechanism to facilitate visual attention. A good visualization guides the observer's attention to the relevant aspects of the representation. Hence, the distribution of salience over a visualization image is an essential measure of the quality of the visualization. We describe a method for computing such a metric for a visualization image in the context of a given dataset. We show how this technique can be used to analyze a visualization's salience, improve an existing visualization, and choose the best representation from a set of alternatives. The usefulness of this proposed metric is illustrated using examples from information visualization, volume visualization and flow visualization.
doi_str_mv 10.1111/j.1467-8659.2009.01667.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671460354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112532691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4777-6c57a6531eb062ac20f3ee68748e39bdf4a2bb4f50130614982f6dfd72f135e03</originalsourceid><addsrcrecordid>eNqNkE9PgzAYhxujiXP6HYgnL2AL_QMHD8ui02RTF6c7vinQJiCD2ULc_PQWMTt4spe27_t7mr4PQh7BAXHrugwI5cKPOUuCEOMkwIRzEeyO0OjQOEYjVxW-wIydojNrS4wxFZyNEJl4L7IqVJ0pP5VW5d6yc_d27y1Ua4rM043x3grbF79kWzT1OTrRsrLq4ncfo9e729X03p8_zR6mk7mfUSGEzzMmJGcRUSnmocxCrCOleCxorKIkzTWVYZpSzTCJMCc0iUPNc52LUJOIKRyN0dXw7tY0H52yLWwKm6mqkrVqOgtuIDcgjhh10cs_0bLpTO1-B4LSUHDOmAvFQygzjbVGadiaYiPNHgiGXiWU0BuD3hj0KuFHJewcejOgn0Wl9v_mYDq760-O9we-sK3aHXhp3sF1BYP14wwWz2K5WC3XsI6-AZ5thzU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744276655</pqid></control><display><type>article</type><title>A Salience-based Quality Metric for Visualization</title><source>EBSCOhost Business Source Ultimate</source><source>EBSCOhost Art &amp; Architecture Source - eBooks</source><source>Wiley</source><creator>Jänicke, H. ; Chen, M.</creator><creatorcontrib>Jänicke, H. ; Chen, M.</creatorcontrib><description>Salience detection is a principle mechanism to facilitate visual attention. A good visualization guides the observer's attention to the relevant aspects of the representation. Hence, the distribution of salience over a visualization image is an essential measure of the quality of the visualization. We describe a method for computing such a metric for a visualization image in the context of a given dataset. We show how this technique can be used to analyze a visualization's salience, improve an existing visualization, and choose the best representation from a set of alternatives. The usefulness of this proposed metric is illustrated using examples from information visualization, volume visualization and flow visualization.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/j.1467-8659.2009.01667.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>C (programming language) ; Computation ; Computer graphics ; Data visualization ; Flow visualization ; I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation ; Measurement ; Quality ; Representations ; Studies ; Visual ; Visualization</subject><ispartof>Computer graphics forum, 2010-06, Vol.29 (3), p.1183-1192</ispartof><rights>2010 The Author(s) Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.</rights><rights>2010 The Eurographics Association and Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4777-6c57a6531eb062ac20f3ee68748e39bdf4a2bb4f50130614982f6dfd72f135e03</citedby><cites>FETCH-LOGICAL-c4777-6c57a6531eb062ac20f3ee68748e39bdf4a2bb4f50130614982f6dfd72f135e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Jänicke, H.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><title>A Salience-based Quality Metric for Visualization</title><title>Computer graphics forum</title><description>Salience detection is a principle mechanism to facilitate visual attention. A good visualization guides the observer's attention to the relevant aspects of the representation. Hence, the distribution of salience over a visualization image is an essential measure of the quality of the visualization. We describe a method for computing such a metric for a visualization image in the context of a given dataset. We show how this technique can be used to analyze a visualization's salience, improve an existing visualization, and choose the best representation from a set of alternatives. The usefulness of this proposed metric is illustrated using examples from information visualization, volume visualization and flow visualization.</description><subject>C (programming language)</subject><subject>Computation</subject><subject>Computer graphics</subject><subject>Data visualization</subject><subject>Flow visualization</subject><subject>I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation</subject><subject>Measurement</subject><subject>Quality</subject><subject>Representations</subject><subject>Studies</subject><subject>Visual</subject><subject>Visualization</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PgzAYhxujiXP6HYgnL2AL_QMHD8ui02RTF6c7vinQJiCD2ULc_PQWMTt4spe27_t7mr4PQh7BAXHrugwI5cKPOUuCEOMkwIRzEeyO0OjQOEYjVxW-wIydojNrS4wxFZyNEJl4L7IqVJ0pP5VW5d6yc_d27y1Ua4rM043x3grbF79kWzT1OTrRsrLq4ncfo9e729X03p8_zR6mk7mfUSGEzzMmJGcRUSnmocxCrCOleCxorKIkzTWVYZpSzTCJMCc0iUPNc52LUJOIKRyN0dXw7tY0H52yLWwKm6mqkrVqOgtuIDcgjhh10cs_0bLpTO1-B4LSUHDOmAvFQygzjbVGadiaYiPNHgiGXiWU0BuD3hj0KuFHJewcejOgn0Wl9v_mYDq760-O9we-sK3aHXhp3sF1BYP14wwWz2K5WC3XsI6-AZ5thzU</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Jänicke, H.</creator><creator>Chen, M.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201006</creationdate><title>A Salience-based Quality Metric for Visualization</title><author>Jänicke, H. ; Chen, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4777-6c57a6531eb062ac20f3ee68748e39bdf4a2bb4f50130614982f6dfd72f135e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>C (programming language)</topic><topic>Computation</topic><topic>Computer graphics</topic><topic>Data visualization</topic><topic>Flow visualization</topic><topic>I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation</topic><topic>Measurement</topic><topic>Quality</topic><topic>Representations</topic><topic>Studies</topic><topic>Visual</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jänicke, H.</creatorcontrib><creatorcontrib>Chen, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jänicke, H.</au><au>Chen, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Salience-based Quality Metric for Visualization</atitle><jtitle>Computer graphics forum</jtitle><date>2010-06</date><risdate>2010</risdate><volume>29</volume><issue>3</issue><spage>1183</spage><epage>1192</epage><pages>1183-1192</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Salience detection is a principle mechanism to facilitate visual attention. A good visualization guides the observer's attention to the relevant aspects of the representation. Hence, the distribution of salience over a visualization image is an essential measure of the quality of the visualization. We describe a method for computing such a metric for a visualization image in the context of a given dataset. We show how this technique can be used to analyze a visualization's salience, improve an existing visualization, and choose the best representation from a set of alternatives. The usefulness of this proposed metric is illustrated using examples from information visualization, volume visualization and flow visualization.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-8659.2009.01667.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2010-06, Vol.29 (3), p.1183-1192
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_1671460354
source EBSCOhost Business Source Ultimate; EBSCOhost Art & Architecture Source - eBooks; Wiley
subjects C (programming language)
Computation
Computer graphics
Data visualization
Flow visualization
I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation
Measurement
Quality
Representations
Studies
Visual
Visualization
title A Salience-based Quality Metric for Visualization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Salience-based%20Quality%20Metric%20for%20Visualization&rft.jtitle=Computer%20graphics%20forum&rft.au=J%C3%A4nicke,%20H.&rft.date=2010-06&rft.volume=29&rft.issue=3&rft.spage=1183&rft.epage=1192&rft.pages=1183-1192&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/j.1467-8659.2009.01667.x&rft_dat=%3Cproquest_cross%3E2112532691%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4777-6c57a6531eb062ac20f3ee68748e39bdf4a2bb4f50130614982f6dfd72f135e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=744276655&rft_id=info:pmid/&rfr_iscdi=true