Loading…

Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration

In this study, we evaluated the feasibility of in situ electrokinetic remediation for arsenic (As)-, copper (Cu)-, and lead (Pb)-contaminated soil, in a pilot-scale field application with two-dimensional electrode configurations. Square and hexagonal configurations with different electrode spacing,...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2014-03, Vol.21 (6), p.4482-4491
Main Authors: Kim, Woo-Seung, Jeon, Eun-Ki, Jung, Ji-Min, Jung, Hong-Bae, Ko, Sung-Hwan, Seo, Chang-Il, Baek, Kitae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we evaluated the feasibility of in situ electrokinetic remediation for arsenic (As)-, copper (Cu)-, and lead (Pb)-contaminated soil, in a pilot-scale field application with two-dimensional electrode configurations. Square and hexagonal configurations with different electrode spacing, 1 m and 2  m , were investigated under a constant 100 V. A square configuration with electrode spacing of 2 m removed 61.5 % of As, 11.4 % of Cu, and 0.9 % of Pb, respectively, and a hexagonal configuration with the same spacing showed a higher removal efficiency in top (59 % of As, 0–0.5 m) and middle (53 % of As, 0.5–1.0 m) layers, but much lower removal efficiency in the bottom layer (1–1.5 m), which was thought to be due to groundwater flow through periodic rise and fall of tides. Fractionation analysis showed that As bound to Fe–Mn oxyhydroxide was the main form of As removed by the electrokinetic process. The two-dimensional configuration wasted less electrical energy by Joule heating, and required fewer electrode installations, compared to the one-dimensional electrode configuration.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-013-2424-0