Loading…
Texture based segmentation using graph cut and Gabor filters
This paper describes a method for texture based segmentation. Texture features are extracted by applying a bank of Gabor filters using two-sided convolution strategy. Probability texture model is represented by Gaussian mixture that is trained with the Expectation-maximization algorithm. Texture sim...
Saved in:
Published in: | Pattern recognition and image analysis 2011-06, Vol.21 (2), p.258-261 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes a method for texture based segmentation. Texture features are extracted by applying a bank of Gabor filters using two-sided convolution strategy. Probability texture model is represented by Gaussian mixture that is trained with the Expectation-maximization algorithm. Texture similarity, obtained this way, is used like the input of a Graph cut method. We show that the combination of texture analysis and the Graph cut method produce good results. |
---|---|
ISSN: | 1054-6618 1555-6212 |
DOI: | 10.1134/S105466181102043X |