Loading…
Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions
This paper proposes an adaptive fuzzy PSO (AFPSO) algorithm, based on the standard particle swarm optimization (SPSO) algorithm. The proposed AFPSO utilizes fuzzy set theory to adjust PSO acceleration coefficients adaptively, and is thereby able to improve the accuracy and efficiency of searches. In...
Saved in:
Published in: | Information sciences 2011-10, Vol.181 (20), p.4539-4549 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes an adaptive fuzzy PSO (AFPSO) algorithm, based on the standard particle swarm optimization (SPSO) algorithm. The proposed AFPSO utilizes fuzzy set theory to adjust PSO acceleration coefficients adaptively, and is thereby able to improve the accuracy and efficiency of searches. Incorporating this algorithm with quadratic interpolation and crossover operator further enhances the global searching capability to form a new variant, called AFPSO-QI. We compared the proposed AFPSO and its variant AFPSO-QI with SPSO, quadratic interpolation PSO (QIPSO), unified PSO (UPSO), fully informed particle swarm (FIPS), dynamic multi-swarm PSO (DMSPSO), and comprehensive learning PSO (CLPSO) across sixteen benchmark functions. The proposed algorithms performed well when applied to minimization problems for most of the multimodal functions considered. |
---|---|
ISSN: | 0020-0255 1872-6291 |
DOI: | 10.1016/j.ins.2010.11.025 |