Loading…
Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications
► Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. ► Microstructure and Na content of the oxide are controlled by deposition potential. ► A lower deposition potential leads to a higher porosity of the prepared oxide. ► Na doping significantly increases the oxide ca...
Saved in:
Published in: | Journal of alloys and compounds 2012-09, Vol.536 (SUPPL.1), p.S428-S431 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03 |
container_end_page | S431 |
container_issue | SUPPL.1 |
container_start_page | S428 |
container_title | Journal of alloys and compounds |
container_volume | 536 |
creator | Lai, Chun-Hung Lin, Chung-Kwei Lee, Sheng-Wei Li, Hui-Ying Chang, Jeng-Kuei Deng, Ming-Jay |
description | ► Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. ► Microstructure and Na content of the oxide are controlled by deposition potential. ► A lower deposition potential leads to a higher porosity of the prepared oxide. ► Na doping significantly increases the oxide capacitance. ► The nanostructured Na-doped oxide shows an ideal supercapacitor performance.
Vanadium-based oxides are prepared on graphite substrates by an anodic deposition technique. The plating bath is 0.2M VOSO4 solution with NaCH3COO addition. A scanning electron microscope and an X-ray diffractometer are used to characterize the deposits; the analyses indicate that the porous Na-doped V2O5 electrodes with a nano-crystalline nature are obtained. Supercapacitor properties of the oxide electrodes are studied using cyclic voltammetry in KCl aqueous electrolyte. The data show that the deposited oxides can exhibit ideal capacitive behavior over a potential range of 1V; the optimum specific capacitance is ∼180F/g. A lower deposition potential leads to a higher porosity of the oxide, resulting in a better high-rate supercapacitor performance of the electrode. |
doi_str_mv | 10.1016/j.jallcom.2011.12.038 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671471197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838811023085</els_id><sourcerecordid>1464603089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03</originalsourceid><addsrcrecordid>eNqNkd9rFDEQx4MoeLb9Ewr7Iviy22STzY8nkWJVKPVFn0Nuktgce8maZKvtX2-OO_paYWAmM5_JDPNF6JLggWDCr3bDzswzpP0wYkIGMg6YyldoQ6SgPeNcvUYbrMapl1TKt-hdKTuMMVGUbNCfOxNTqXmFumZnuzvT27S04MFEY8O679LfYF1XHmO9dyU8tdJaQvzVmdgs2QCddUsqoYYUu-rgPobfq-t8yl1ZF5fBLAZCbU-zLHMAcwDLOXrjzVzcxcmfoZ83n39cf-1vv3_5dv3ptgdGZe05nzD1MGIl7CTATCNn4EfhvYTtKAEmCdJNBoiHlsFeWrW1WyBKSTYBpmfow_HfJae2Vql6Hwq4eTbRpbVowgVhghAl_gulUghGX0YZZxxTLFVDpyMKOZWSnddLDnuTHzXB-iCf3umTfPognyajbvK1vvenEaaAmX02EUJ5bm53UExg3riPR861Kz4El3WB4CI4G7KDqm0KL0z6BxBntjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464603089</pqid></control><display><type>article</type><title>Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications</title><source>Elsevier</source><creator>Lai, Chun-Hung ; Lin, Chung-Kwei ; Lee, Sheng-Wei ; Li, Hui-Ying ; Chang, Jeng-Kuei ; Deng, Ming-Jay</creator><creatorcontrib>Lai, Chun-Hung ; Lin, Chung-Kwei ; Lee, Sheng-Wei ; Li, Hui-Ying ; Chang, Jeng-Kuei ; Deng, Ming-Jay</creatorcontrib><description>► Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. ► Microstructure and Na content of the oxide are controlled by deposition potential. ► A lower deposition potential leads to a higher porosity of the prepared oxide. ► Na doping significantly increases the oxide capacitance. ► The nanostructured Na-doped oxide shows an ideal supercapacitor performance.
Vanadium-based oxides are prepared on graphite substrates by an anodic deposition technique. The plating bath is 0.2M VOSO4 solution with NaCH3COO addition. A scanning electron microscope and an X-ray diffractometer are used to characterize the deposits; the analyses indicate that the porous Na-doped V2O5 electrodes with a nano-crystalline nature are obtained. Supercapacitor properties of the oxide electrodes are studied using cyclic voltammetry in KCl aqueous electrolyte. The data show that the deposited oxides can exhibit ideal capacitive behavior over a potential range of 1V; the optimum specific capacitance is ∼180F/g. A lower deposition potential leads to a higher porosity of the oxide, resulting in a better high-rate supercapacitor performance of the electrode.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2011.12.038</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Anodic ; Anodic deposition ; Applied sciences ; Capacitors ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electrodeposition, electroplating ; Electrodes ; Electronics ; Exact sciences and technology ; Materials ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Na doping ; Nano-structure ; Nanocrystals ; Oxides ; Physics ; Scanning electron microscopy ; Supercapacitor ; Supercapacitors ; Vanadium oxide</subject><ispartof>Journal of alloys and compounds, 2012-09, Vol.536 (SUPPL.1), p.S428-S431</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03</citedby><cites>FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26494706$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Chun-Hung</creatorcontrib><creatorcontrib>Lin, Chung-Kwei</creatorcontrib><creatorcontrib>Lee, Sheng-Wei</creatorcontrib><creatorcontrib>Li, Hui-Ying</creatorcontrib><creatorcontrib>Chang, Jeng-Kuei</creatorcontrib><creatorcontrib>Deng, Ming-Jay</creatorcontrib><title>Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications</title><title>Journal of alloys and compounds</title><description>► Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. ► Microstructure and Na content of the oxide are controlled by deposition potential. ► A lower deposition potential leads to a higher porosity of the prepared oxide. ► Na doping significantly increases the oxide capacitance. ► The nanostructured Na-doped oxide shows an ideal supercapacitor performance.
Vanadium-based oxides are prepared on graphite substrates by an anodic deposition technique. The plating bath is 0.2M VOSO4 solution with NaCH3COO addition. A scanning electron microscope and an X-ray diffractometer are used to characterize the deposits; the analyses indicate that the porous Na-doped V2O5 electrodes with a nano-crystalline nature are obtained. Supercapacitor properties of the oxide electrodes are studied using cyclic voltammetry in KCl aqueous electrolyte. The data show that the deposited oxides can exhibit ideal capacitive behavior over a potential range of 1V; the optimum specific capacitance is ∼180F/g. A lower deposition potential leads to a higher porosity of the oxide, resulting in a better high-rate supercapacitor performance of the electrode.</description><subject>Anodic</subject><subject>Anodic deposition</subject><subject>Applied sciences</subject><subject>Capacitors</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electrodeposition, electroplating</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Materials</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Na doping</subject><subject>Nano-structure</subject><subject>Nanocrystals</subject><subject>Oxides</subject><subject>Physics</subject><subject>Scanning electron microscopy</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><subject>Vanadium oxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkd9rFDEQx4MoeLb9Ewr7Iviy22STzY8nkWJVKPVFn0Nuktgce8maZKvtX2-OO_paYWAmM5_JDPNF6JLggWDCr3bDzswzpP0wYkIGMg6YyldoQ6SgPeNcvUYbrMapl1TKt-hdKTuMMVGUbNCfOxNTqXmFumZnuzvT27S04MFEY8O679LfYF1XHmO9dyU8tdJaQvzVmdgs2QCddUsqoYYUu-rgPobfq-t8yl1ZF5fBLAZCbU-zLHMAcwDLOXrjzVzcxcmfoZ83n39cf-1vv3_5dv3ptgdGZe05nzD1MGIl7CTATCNn4EfhvYTtKAEmCdJNBoiHlsFeWrW1WyBKSTYBpmfow_HfJae2Vql6Hwq4eTbRpbVowgVhghAl_gulUghGX0YZZxxTLFVDpyMKOZWSnddLDnuTHzXB-iCf3umTfPognyajbvK1vvenEaaAmX02EUJ5bm53UExg3riPR861Kz4El3WB4CI4G7KDqm0KL0z6BxBntjE</recordid><startdate>20120925</startdate><enddate>20120925</enddate><creator>Lai, Chun-Hung</creator><creator>Lin, Chung-Kwei</creator><creator>Lee, Sheng-Wei</creator><creator>Li, Hui-Ying</creator><creator>Chang, Jeng-Kuei</creator><creator>Deng, Ming-Jay</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120925</creationdate><title>Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications</title><author>Lai, Chun-Hung ; Lin, Chung-Kwei ; Lee, Sheng-Wei ; Li, Hui-Ying ; Chang, Jeng-Kuei ; Deng, Ming-Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anodic</topic><topic>Anodic deposition</topic><topic>Applied sciences</topic><topic>Capacitors</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electrodeposition, electroplating</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Materials</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Na doping</topic><topic>Nano-structure</topic><topic>Nanocrystals</topic><topic>Oxides</topic><topic>Physics</topic><topic>Scanning electron microscopy</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><topic>Vanadium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Chun-Hung</creatorcontrib><creatorcontrib>Lin, Chung-Kwei</creatorcontrib><creatorcontrib>Lee, Sheng-Wei</creatorcontrib><creatorcontrib>Li, Hui-Ying</creatorcontrib><creatorcontrib>Chang, Jeng-Kuei</creatorcontrib><creatorcontrib>Deng, Ming-Jay</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Chun-Hung</au><au>Lin, Chung-Kwei</au><au>Lee, Sheng-Wei</au><au>Li, Hui-Ying</au><au>Chang, Jeng-Kuei</au><au>Deng, Ming-Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2012-09-25</date><risdate>2012</risdate><volume>536</volume><issue>SUPPL.1</issue><spage>S428</spage><epage>S431</epage><pages>S428-S431</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>► Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. ► Microstructure and Na content of the oxide are controlled by deposition potential. ► A lower deposition potential leads to a higher porosity of the prepared oxide. ► Na doping significantly increases the oxide capacitance. ► The nanostructured Na-doped oxide shows an ideal supercapacitor performance.
Vanadium-based oxides are prepared on graphite substrates by an anodic deposition technique. The plating bath is 0.2M VOSO4 solution with NaCH3COO addition. A scanning electron microscope and an X-ray diffractometer are used to characterize the deposits; the analyses indicate that the porous Na-doped V2O5 electrodes with a nano-crystalline nature are obtained. Supercapacitor properties of the oxide electrodes are studied using cyclic voltammetry in KCl aqueous electrolyte. The data show that the deposited oxides can exhibit ideal capacitive behavior over a potential range of 1V; the optimum specific capacitance is ∼180F/g. A lower deposition potential leads to a higher porosity of the oxide, resulting in a better high-rate supercapacitor performance of the electrode.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2011.12.038</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2012-09, Vol.536 (SUPPL.1), p.S428-S431 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671471197 |
source | Elsevier |
subjects | Anodic Anodic deposition Applied sciences Capacitors Cross-disciplinary physics: materials science rheology Deposition Electrodeposition, electroplating Electrodes Electronics Exact sciences and technology Materials Materials science Methods of deposition of films and coatings film growth and epitaxy Na doping Nano-structure Nanocrystals Oxides Physics Scanning electron microscopy Supercapacitor Supercapacitors Vanadium oxide |
title | Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20Na-doped%20vanadium%20oxide%20synthesized%20using%20an%20anodic%20deposition%20technique%20for%20supercapacitor%20applications&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Lai,%20Chun-Hung&rft.date=2012-09-25&rft.volume=536&rft.issue=SUPPL.1&rft.spage=S428&rft.epage=S431&rft.pages=S428-S431&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2011.12.038&rft_dat=%3Cproquest_cross%3E1464603089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464603089&rft_id=info:pmid/&rfr_iscdi=true |