Loading…

Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications

► Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. ► Microstructure and Na content of the oxide are controlled by deposition potential. ► A lower deposition potential leads to a higher porosity of the prepared oxide. ► Na doping significantly increases the oxide ca...

Full description

Saved in:
Bibliographic Details
Published in:Journal of alloys and compounds 2012-09, Vol.536 (SUPPL.1), p.S428-S431
Main Authors: Lai, Chun-Hung, Lin, Chung-Kwei, Lee, Sheng-Wei, Li, Hui-Ying, Chang, Jeng-Kuei, Deng, Ming-Jay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03
cites cdi_FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03
container_end_page S431
container_issue SUPPL.1
container_start_page S428
container_title Journal of alloys and compounds
container_volume 536
creator Lai, Chun-Hung
Lin, Chung-Kwei
Lee, Sheng-Wei
Li, Hui-Ying
Chang, Jeng-Kuei
Deng, Ming-Jay
description ► Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. ► Microstructure and Na content of the oxide are controlled by deposition potential. ► A lower deposition potential leads to a higher porosity of the prepared oxide. ► Na doping significantly increases the oxide capacitance. ► The nanostructured Na-doped oxide shows an ideal supercapacitor performance. Vanadium-based oxides are prepared on graphite substrates by an anodic deposition technique. The plating bath is 0.2M VOSO4 solution with NaCH3COO addition. A scanning electron microscope and an X-ray diffractometer are used to characterize the deposits; the analyses indicate that the porous Na-doped V2O5 electrodes with a nano-crystalline nature are obtained. Supercapacitor properties of the oxide electrodes are studied using cyclic voltammetry in KCl aqueous electrolyte. The data show that the deposited oxides can exhibit ideal capacitive behavior over a potential range of 1V; the optimum specific capacitance is ∼180F/g. A lower deposition potential leads to a higher porosity of the oxide, resulting in a better high-rate supercapacitor performance of the electrode.
doi_str_mv 10.1016/j.jallcom.2011.12.038
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671471197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838811023085</els_id><sourcerecordid>1464603089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03</originalsourceid><addsrcrecordid>eNqNkd9rFDEQx4MoeLb9Ewr7Iviy22STzY8nkWJVKPVFn0Nuktgce8maZKvtX2-OO_paYWAmM5_JDPNF6JLggWDCr3bDzswzpP0wYkIGMg6YyldoQ6SgPeNcvUYbrMapl1TKt-hdKTuMMVGUbNCfOxNTqXmFumZnuzvT27S04MFEY8O679LfYF1XHmO9dyU8tdJaQvzVmdgs2QCddUsqoYYUu-rgPobfq-t8yl1ZF5fBLAZCbU-zLHMAcwDLOXrjzVzcxcmfoZ83n39cf-1vv3_5dv3ptgdGZe05nzD1MGIl7CTATCNn4EfhvYTtKAEmCdJNBoiHlsFeWrW1WyBKSTYBpmfow_HfJae2Vql6Hwq4eTbRpbVowgVhghAl_gulUghGX0YZZxxTLFVDpyMKOZWSnddLDnuTHzXB-iCf3umTfPognyajbvK1vvenEaaAmX02EUJ5bm53UExg3riPR861Kz4El3WB4CI4G7KDqm0KL0z6BxBntjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464603089</pqid></control><display><type>article</type><title>Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications</title><source>Elsevier</source><creator>Lai, Chun-Hung ; Lin, Chung-Kwei ; Lee, Sheng-Wei ; Li, Hui-Ying ; Chang, Jeng-Kuei ; Deng, Ming-Jay</creator><creatorcontrib>Lai, Chun-Hung ; Lin, Chung-Kwei ; Lee, Sheng-Wei ; Li, Hui-Ying ; Chang, Jeng-Kuei ; Deng, Ming-Jay</creatorcontrib><description>► Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. ► Microstructure and Na content of the oxide are controlled by deposition potential. ► A lower deposition potential leads to a higher porosity of the prepared oxide. ► Na doping significantly increases the oxide capacitance. ► The nanostructured Na-doped oxide shows an ideal supercapacitor performance. Vanadium-based oxides are prepared on graphite substrates by an anodic deposition technique. The plating bath is 0.2M VOSO4 solution with NaCH3COO addition. A scanning electron microscope and an X-ray diffractometer are used to characterize the deposits; the analyses indicate that the porous Na-doped V2O5 electrodes with a nano-crystalline nature are obtained. Supercapacitor properties of the oxide electrodes are studied using cyclic voltammetry in KCl aqueous electrolyte. The data show that the deposited oxides can exhibit ideal capacitive behavior over a potential range of 1V; the optimum specific capacitance is ∼180F/g. A lower deposition potential leads to a higher porosity of the oxide, resulting in a better high-rate supercapacitor performance of the electrode.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2011.12.038</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Anodic ; Anodic deposition ; Applied sciences ; Capacitors ; Cross-disciplinary physics: materials science; rheology ; Deposition ; Electrodeposition, electroplating ; Electrodes ; Electronics ; Exact sciences and technology ; Materials ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Na doping ; Nano-structure ; Nanocrystals ; Oxides ; Physics ; Scanning electron microscopy ; Supercapacitor ; Supercapacitors ; Vanadium oxide</subject><ispartof>Journal of alloys and compounds, 2012-09, Vol.536 (SUPPL.1), p.S428-S431</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03</citedby><cites>FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26494706$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Chun-Hung</creatorcontrib><creatorcontrib>Lin, Chung-Kwei</creatorcontrib><creatorcontrib>Lee, Sheng-Wei</creatorcontrib><creatorcontrib>Li, Hui-Ying</creatorcontrib><creatorcontrib>Chang, Jeng-Kuei</creatorcontrib><creatorcontrib>Deng, Ming-Jay</creatorcontrib><title>Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications</title><title>Journal of alloys and compounds</title><description>► Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. ► Microstructure and Na content of the oxide are controlled by deposition potential. ► A lower deposition potential leads to a higher porosity of the prepared oxide. ► Na doping significantly increases the oxide capacitance. ► The nanostructured Na-doped oxide shows an ideal supercapacitor performance. Vanadium-based oxides are prepared on graphite substrates by an anodic deposition technique. The plating bath is 0.2M VOSO4 solution with NaCH3COO addition. A scanning electron microscope and an X-ray diffractometer are used to characterize the deposits; the analyses indicate that the porous Na-doped V2O5 electrodes with a nano-crystalline nature are obtained. Supercapacitor properties of the oxide electrodes are studied using cyclic voltammetry in KCl aqueous electrolyte. The data show that the deposited oxides can exhibit ideal capacitive behavior over a potential range of 1V; the optimum specific capacitance is ∼180F/g. A lower deposition potential leads to a higher porosity of the oxide, resulting in a better high-rate supercapacitor performance of the electrode.</description><subject>Anodic</subject><subject>Anodic deposition</subject><subject>Applied sciences</subject><subject>Capacitors</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Deposition</subject><subject>Electrodeposition, electroplating</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Materials</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Na doping</subject><subject>Nano-structure</subject><subject>Nanocrystals</subject><subject>Oxides</subject><subject>Physics</subject><subject>Scanning electron microscopy</subject><subject>Supercapacitor</subject><subject>Supercapacitors</subject><subject>Vanadium oxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkd9rFDEQx4MoeLb9Ewr7Iviy22STzY8nkWJVKPVFn0Nuktgce8maZKvtX2-OO_paYWAmM5_JDPNF6JLggWDCr3bDzswzpP0wYkIGMg6YyldoQ6SgPeNcvUYbrMapl1TKt-hdKTuMMVGUbNCfOxNTqXmFumZnuzvT27S04MFEY8O679LfYF1XHmO9dyU8tdJaQvzVmdgs2QCddUsqoYYUu-rgPobfq-t8yl1ZF5fBLAZCbU-zLHMAcwDLOXrjzVzcxcmfoZ83n39cf-1vv3_5dv3ptgdGZe05nzD1MGIl7CTATCNn4EfhvYTtKAEmCdJNBoiHlsFeWrW1WyBKSTYBpmfow_HfJae2Vql6Hwq4eTbRpbVowgVhghAl_gulUghGX0YZZxxTLFVDpyMKOZWSnddLDnuTHzXB-iCf3umTfPognyajbvK1vvenEaaAmX02EUJ5bm53UExg3riPR861Kz4El3WB4CI4G7KDqm0KL0z6BxBntjE</recordid><startdate>20120925</startdate><enddate>20120925</enddate><creator>Lai, Chun-Hung</creator><creator>Lin, Chung-Kwei</creator><creator>Lee, Sheng-Wei</creator><creator>Li, Hui-Ying</creator><creator>Chang, Jeng-Kuei</creator><creator>Deng, Ming-Jay</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120925</creationdate><title>Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications</title><author>Lai, Chun-Hung ; Lin, Chung-Kwei ; Lee, Sheng-Wei ; Li, Hui-Ying ; Chang, Jeng-Kuei ; Deng, Ming-Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anodic</topic><topic>Anodic deposition</topic><topic>Applied sciences</topic><topic>Capacitors</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Deposition</topic><topic>Electrodeposition, electroplating</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Materials</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Na doping</topic><topic>Nano-structure</topic><topic>Nanocrystals</topic><topic>Oxides</topic><topic>Physics</topic><topic>Scanning electron microscopy</topic><topic>Supercapacitor</topic><topic>Supercapacitors</topic><topic>Vanadium oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Chun-Hung</creatorcontrib><creatorcontrib>Lin, Chung-Kwei</creatorcontrib><creatorcontrib>Lee, Sheng-Wei</creatorcontrib><creatorcontrib>Li, Hui-Ying</creatorcontrib><creatorcontrib>Chang, Jeng-Kuei</creatorcontrib><creatorcontrib>Deng, Ming-Jay</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Chun-Hung</au><au>Lin, Chung-Kwei</au><au>Lee, Sheng-Wei</au><au>Li, Hui-Ying</au><au>Chang, Jeng-Kuei</au><au>Deng, Ming-Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2012-09-25</date><risdate>2012</risdate><volume>536</volume><issue>SUPPL.1</issue><spage>S428</spage><epage>S431</epage><pages>S428-S431</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>► Na-doped vanadium oxide is successfully prepared by an electrodeposition technique. ► Microstructure and Na content of the oxide are controlled by deposition potential. ► A lower deposition potential leads to a higher porosity of the prepared oxide. ► Na doping significantly increases the oxide capacitance. ► The nanostructured Na-doped oxide shows an ideal supercapacitor performance. Vanadium-based oxides are prepared on graphite substrates by an anodic deposition technique. The plating bath is 0.2M VOSO4 solution with NaCH3COO addition. A scanning electron microscope and an X-ray diffractometer are used to characterize the deposits; the analyses indicate that the porous Na-doped V2O5 electrodes with a nano-crystalline nature are obtained. Supercapacitor properties of the oxide electrodes are studied using cyclic voltammetry in KCl aqueous electrolyte. The data show that the deposited oxides can exhibit ideal capacitive behavior over a potential range of 1V; the optimum specific capacitance is ∼180F/g. A lower deposition potential leads to a higher porosity of the oxide, resulting in a better high-rate supercapacitor performance of the electrode.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2011.12.038</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2012-09, Vol.536 (SUPPL.1), p.S428-S431
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_1671471197
source Elsevier
subjects Anodic
Anodic deposition
Applied sciences
Capacitors
Cross-disciplinary physics: materials science
rheology
Deposition
Electrodeposition, electroplating
Electrodes
Electronics
Exact sciences and technology
Materials
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Na doping
Nano-structure
Nanocrystals
Oxides
Physics
Scanning electron microscopy
Supercapacitor
Supercapacitors
Vanadium oxide
title Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructured%20Na-doped%20vanadium%20oxide%20synthesized%20using%20an%20anodic%20deposition%20technique%20for%20supercapacitor%20applications&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Lai,%20Chun-Hung&rft.date=2012-09-25&rft.volume=536&rft.issue=SUPPL.1&rft.spage=S428&rft.epage=S431&rft.pages=S428-S431&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2011.12.038&rft_dat=%3Cproquest_cross%3E1464603089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-66503fc2097d57ca5264cf27ff8cb28cc58c8e5ac1fc8cb0f8d9bdbc199845c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464603089&rft_id=info:pmid/&rfr_iscdi=true