Loading…
Safety factor calculation of soil slope reinforced with piles based on Hill’s model theory
How to evaluate reasonably the stability of a soil slope reinforced with piles (SSRP) still is an urgent problem. At present, the three-dimensional (3D) finite element strength reduction method has been used for the soil slope stability analysis. However, to accurately determine the global instabili...
Saved in:
Published in: | Environmental earth sciences 2014-04, Vol.71 (8), p.3423-3428 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | How to evaluate reasonably the stability of a soil slope reinforced with piles (SSRP) still is an urgent problem. At present, the three-dimensional (3D) finite element strength reduction method has been used for the soil slope stability analysis. However, to accurately determine the global instability of soil slopes is the key to implementing the strength reduction finite element method. In this paper, the 3D finite element strength reduction algorithm (FESRA), based on Hill’s model theory, is proposed to assess the stability of SSRP and study on the relationship between the safety coefficients of SSRP and the displacements of slope mass. The results show that: (1) the relationship between the safety coefficients of SSRP and the displacements of slope mass agrees with the Hill’s model; (2) the proposed method (3D FESRA based on Hill’s model theory) in this study may take into account simultaneously the pile response and slope stability, and makes the results of SSRP stability analysis reasonable and reliable, which could be used as a reference for the evaluation of stability of the same type of slope; and (3) further study should be done to confirm whether the proposed method in this study is suitable for other types of slopes. |
---|---|
ISSN: | 1866-6280 1866-6299 |
DOI: | 10.1007/s12665-013-2730-3 |