Loading…

Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies

This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooper...

Full description

Saved in:
Bibliographic Details
Published in:Journal of global optimization 2013-10, Vol.57 (2), p.499-519
Main Authors: Aydemir, Fatma Başak, Günay, Akın, Öztoprak, Figen, Birbil, Ş. İlker, Yolum, Pınar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3
cites cdi_FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3
container_end_page 519
container_issue 2
container_start_page 499
container_title Journal of global optimization
container_volume 57
creator Aydemir, Fatma Başak
Günay, Akın
Öztoprak, Figen
Birbil, Ş. İlker
Yolum, Pınar
description This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points.
doi_str_mv 10.1007/s10898-012-0012-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671482401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743677398</galeid><sourcerecordid>A743677398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EEkvhB3CzxIVLWo-drB1uVUUBqaiXcracZBJcHDvYWdoifjyzSg8VErJlWzPfGz3rMfYWxCkIoc8KCNOaSoCsxPFQz9gOGq0q2cL-OduJVjZVQ62X7FUpt0KI1jRyx_58PYTVuwnjyvuUFsxu9SnyMWVeUvjl48SnkDoXeFpWP_vfW3_JqQs4lw_cRY73K8bBU4GP2c14l_IPfufX79Rx80Llp6PLSg-cPJbX7MXoQsE3j_cJ-3b58ebic3V1_enLxflV1Stj1qrGTnStHmEYYFDQ7WsjZK86QNHWwyBBSqMacL2uUXXNIAU2zulaEArGoDph77e55PrnActqZ196DMFFTIdiYa-hNpIEhL77B71NhxzJnYVaadpaNkSdbtTkAlofx0R_6mkNOPs-RRw91c8J32utWkMC2AR9TqVkHO2S_ezygwVhjwHaLUBL2dljgFaRRm6aQmycMD-x8l_RX8RJn9E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437437725</pqid></control><display><type>article</type><title>Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Aydemir, Fatma Başak ; Günay, Akın ; Öztoprak, Figen ; Birbil, Ş. İlker ; Yolum, Pınar</creator><creatorcontrib>Aydemir, Fatma Başak ; Günay, Akın ; Öztoprak, Figen ; Birbil, Ş. İlker ; Yolum, Pınar</creatorcontrib><description>This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-012-0012-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Analysis ; Communication ; Computer Science ; Cooperation ; Decision making ; Flexible structures ; Mathematical optimization ; Mathematics ; Mathematics and Statistics ; Multiagent systems ; Nonlinearity ; Operations Research/Decision Theory ; Optimization ; Optimization algorithms ; Problem solving ; Real Functions ; Roles ; Run time (computers) ; Software ; Strategy ; Studies</subject><ispartof>Journal of global optimization, 2013-10, Vol.57 (2), p.499-519</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3</citedby><cites>FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1437437725/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1437437725?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74766</link.rule.ids></links><search><creatorcontrib>Aydemir, Fatma Başak</creatorcontrib><creatorcontrib>Günay, Akın</creatorcontrib><creatorcontrib>Öztoprak, Figen</creatorcontrib><creatorcontrib>Birbil, Ş. İlker</creatorcontrib><creatorcontrib>Yolum, Pınar</creatorcontrib><title>Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Communication</subject><subject>Computer Science</subject><subject>Cooperation</subject><subject>Decision making</subject><subject>Flexible structures</subject><subject>Mathematical optimization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiagent systems</subject><subject>Nonlinearity</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Problem solving</subject><subject>Real Functions</subject><subject>Roles</subject><subject>Run time (computers)</subject><subject>Software</subject><subject>Strategy</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kUFv1DAQhS0EEkvhB3CzxIVLWo-drB1uVUUBqaiXcracZBJcHDvYWdoifjyzSg8VErJlWzPfGz3rMfYWxCkIoc8KCNOaSoCsxPFQz9gOGq0q2cL-OduJVjZVQ62X7FUpt0KI1jRyx_58PYTVuwnjyvuUFsxu9SnyMWVeUvjl48SnkDoXeFpWP_vfW3_JqQs4lw_cRY73K8bBU4GP2c14l_IPfufX79Rx80Llp6PLSg-cPJbX7MXoQsE3j_cJ-3b58ebic3V1_enLxflV1Stj1qrGTnStHmEYYFDQ7WsjZK86QNHWwyBBSqMacL2uUXXNIAU2zulaEArGoDph77e55PrnActqZ196DMFFTIdiYa-hNpIEhL77B71NhxzJnYVaadpaNkSdbtTkAlofx0R_6mkNOPs-RRw91c8J32utWkMC2AR9TqVkHO2S_ezygwVhjwHaLUBL2dljgFaRRm6aQmycMD-x8l_RX8RJn9E</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Aydemir, Fatma Başak</creator><creator>Günay, Akın</creator><creator>Öztoprak, Figen</creator><creator>Birbil, Ş. İlker</creator><creator>Yolum, Pınar</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20131001</creationdate><title>Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies</title><author>Aydemir, Fatma Başak ; Günay, Akın ; Öztoprak, Figen ; Birbil, Ş. İlker ; Yolum, Pınar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Communication</topic><topic>Computer Science</topic><topic>Cooperation</topic><topic>Decision making</topic><topic>Flexible structures</topic><topic>Mathematical optimization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiagent systems</topic><topic>Nonlinearity</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Problem solving</topic><topic>Real Functions</topic><topic>Roles</topic><topic>Run time (computers)</topic><topic>Software</topic><topic>Strategy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aydemir, Fatma Başak</creatorcontrib><creatorcontrib>Günay, Akın</creatorcontrib><creatorcontrib>Öztoprak, Figen</creatorcontrib><creatorcontrib>Birbil, Ş. İlker</creatorcontrib><creatorcontrib>Yolum, Pınar</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aydemir, Fatma Başak</au><au>Günay, Akın</au><au>Öztoprak, Figen</au><au>Birbil, Ş. İlker</au><au>Yolum, Pınar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>57</volume><issue>2</issue><spage>499</spage><epage>519</epage><pages>499-519</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10898-012-0012-3</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2013-10, Vol.57 (2), p.499-519
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_miscellaneous_1671482401
source ABI/INFORM Global; Springer Nature
subjects Algorithms
Analysis
Communication
Computer Science
Cooperation
Decision making
Flexible structures
Mathematical optimization
Mathematics
Mathematics and Statistics
Multiagent systems
Nonlinearity
Operations Research/Decision Theory
Optimization
Optimization algorithms
Problem solving
Real Functions
Roles
Run time (computers)
Software
Strategy
Studies
title Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiagent%20cooperation%20for%20solving%20global%20optimization%20problems:%20an%20extendible%20framework%20with%20example%20cooperation%20strategies&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Aydemir,%20Fatma%20Ba%C5%9Fak&rft.date=2013-10-01&rft.volume=57&rft.issue=2&rft.spage=499&rft.epage=519&rft.pages=499-519&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-012-0012-3&rft_dat=%3Cgale_proqu%3EA743677398%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1437437725&rft_id=info:pmid/&rft_galeid=A743677398&rfr_iscdi=true