Loading…
Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies
This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooper...
Saved in:
Published in: | Journal of global optimization 2013-10, Vol.57 (2), p.499-519 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3 |
container_end_page | 519 |
container_issue | 2 |
container_start_page | 499 |
container_title | Journal of global optimization |
container_volume | 57 |
creator | Aydemir, Fatma Başak Günay, Akın Öztoprak, Figen Birbil, Ş. İlker Yolum, Pınar |
description | This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points. |
doi_str_mv | 10.1007/s10898-012-0012-3 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671482401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743677398</galeid><sourcerecordid>A743677398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EEkvhB3CzxIVLWo-drB1uVUUBqaiXcracZBJcHDvYWdoifjyzSg8VErJlWzPfGz3rMfYWxCkIoc8KCNOaSoCsxPFQz9gOGq0q2cL-OduJVjZVQ62X7FUpt0KI1jRyx_58PYTVuwnjyvuUFsxu9SnyMWVeUvjl48SnkDoXeFpWP_vfW3_JqQs4lw_cRY73K8bBU4GP2c14l_IPfufX79Rx80Llp6PLSg-cPJbX7MXoQsE3j_cJ-3b58ebic3V1_enLxflV1Stj1qrGTnStHmEYYFDQ7WsjZK86QNHWwyBBSqMacL2uUXXNIAU2zulaEArGoDph77e55PrnActqZ196DMFFTIdiYa-hNpIEhL77B71NhxzJnYVaadpaNkSdbtTkAlofx0R_6mkNOPs-RRw91c8J32utWkMC2AR9TqVkHO2S_ezygwVhjwHaLUBL2dljgFaRRm6aQmycMD-x8l_RX8RJn9E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437437725</pqid></control><display><type>article</type><title>Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Aydemir, Fatma Başak ; Günay, Akın ; Öztoprak, Figen ; Birbil, Ş. İlker ; Yolum, Pınar</creator><creatorcontrib>Aydemir, Fatma Başak ; Günay, Akın ; Öztoprak, Figen ; Birbil, Ş. İlker ; Yolum, Pınar</creatorcontrib><description>This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-012-0012-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Analysis ; Communication ; Computer Science ; Cooperation ; Decision making ; Flexible structures ; Mathematical optimization ; Mathematics ; Mathematics and Statistics ; Multiagent systems ; Nonlinearity ; Operations Research/Decision Theory ; Optimization ; Optimization algorithms ; Problem solving ; Real Functions ; Roles ; Run time (computers) ; Software ; Strategy ; Studies</subject><ispartof>Journal of global optimization, 2013-10, Vol.57 (2), p.499-519</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3</citedby><cites>FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1437437725/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1437437725?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362,74766</link.rule.ids></links><search><creatorcontrib>Aydemir, Fatma Başak</creatorcontrib><creatorcontrib>Günay, Akın</creatorcontrib><creatorcontrib>Öztoprak, Figen</creatorcontrib><creatorcontrib>Birbil, Ş. İlker</creatorcontrib><creatorcontrib>Yolum, Pınar</creatorcontrib><title>Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Communication</subject><subject>Computer Science</subject><subject>Cooperation</subject><subject>Decision making</subject><subject>Flexible structures</subject><subject>Mathematical optimization</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiagent systems</subject><subject>Nonlinearity</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Problem solving</subject><subject>Real Functions</subject><subject>Roles</subject><subject>Run time (computers)</subject><subject>Software</subject><subject>Strategy</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kUFv1DAQhS0EEkvhB3CzxIVLWo-drB1uVUUBqaiXcracZBJcHDvYWdoifjyzSg8VErJlWzPfGz3rMfYWxCkIoc8KCNOaSoCsxPFQz9gOGq0q2cL-OduJVjZVQ62X7FUpt0KI1jRyx_58PYTVuwnjyvuUFsxu9SnyMWVeUvjl48SnkDoXeFpWP_vfW3_JqQs4lw_cRY73K8bBU4GP2c14l_IPfufX79Rx80Llp6PLSg-cPJbX7MXoQsE3j_cJ-3b58ebic3V1_enLxflV1Stj1qrGTnStHmEYYFDQ7WsjZK86QNHWwyBBSqMacL2uUXXNIAU2zulaEArGoDph77e55PrnActqZ196DMFFTIdiYa-hNpIEhL77B71NhxzJnYVaadpaNkSdbtTkAlofx0R_6mkNOPs-RRw91c8J32utWkMC2AR9TqVkHO2S_ezygwVhjwHaLUBL2dljgFaRRm6aQmycMD-x8l_RX8RJn9E</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Aydemir, Fatma Başak</creator><creator>Günay, Akın</creator><creator>Öztoprak, Figen</creator><creator>Birbil, Ş. İlker</creator><creator>Yolum, Pınar</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20131001</creationdate><title>Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies</title><author>Aydemir, Fatma Başak ; Günay, Akın ; Öztoprak, Figen ; Birbil, Ş. İlker ; Yolum, Pınar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Communication</topic><topic>Computer Science</topic><topic>Cooperation</topic><topic>Decision making</topic><topic>Flexible structures</topic><topic>Mathematical optimization</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiagent systems</topic><topic>Nonlinearity</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Problem solving</topic><topic>Real Functions</topic><topic>Roles</topic><topic>Run time (computers)</topic><topic>Software</topic><topic>Strategy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aydemir, Fatma Başak</creatorcontrib><creatorcontrib>Günay, Akın</creatorcontrib><creatorcontrib>Öztoprak, Figen</creatorcontrib><creatorcontrib>Birbil, Ş. İlker</creatorcontrib><creatorcontrib>Yolum, Pınar</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aydemir, Fatma Başak</au><au>Günay, Akın</au><au>Öztoprak, Figen</au><au>Birbil, Ş. İlker</au><au>Yolum, Pınar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>57</volume><issue>2</issue><spage>499</spage><epage>519</epage><pages>499-519</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in its flexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10898-012-0012-3</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2013-10, Vol.57 (2), p.499-519 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671482401 |
source | ABI/INFORM Global; Springer Nature |
subjects | Algorithms Analysis Communication Computer Science Cooperation Decision making Flexible structures Mathematical optimization Mathematics Mathematics and Statistics Multiagent systems Nonlinearity Operations Research/Decision Theory Optimization Optimization algorithms Problem solving Real Functions Roles Run time (computers) Software Strategy Studies |
title | Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiagent%20cooperation%20for%20solving%20global%20optimization%20problems:%20an%20extendible%20framework%20with%20example%20cooperation%20strategies&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Aydemir,%20Fatma%20Ba%C5%9Fak&rft.date=2013-10-01&rft.volume=57&rft.issue=2&rft.spage=499&rft.epage=519&rft.pages=499-519&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-012-0012-3&rft_dat=%3Cgale_proqu%3EA743677398%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-4eb0b97f1dd1d31b64802c3b1e094dd21228351ac74e3b5d20e5aa7401b6188e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1437437725&rft_id=info:pmid/&rft_galeid=A743677398&rfr_iscdi=true |