Loading…

Thermal conductivity measurements on individual vapor-grown carbon nanofibers and graphene nanoplatelets

The thermal flash technique was utilized for measuring the thermal conductivity of vapor-grown carbon nanofibers and graphene nanoplatelets. The vapor-grown carbon nanofibers with stacked-cone morphology and heat treated to 1100 °C and 3000 °C were measured to have thermal conductivities of 1130 W/m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2013-10, Vol.114 (16)
Main Authors: Mahanta, Nayandeep K, Abramson, Alexis R, Howe, Jane Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-94df05d411418afbfe3d40ed982cf490a1094aa819959e2c2e19c0535fa1a14a3
cites cdi_FETCH-LOGICAL-c356t-94df05d411418afbfe3d40ed982cf490a1094aa819959e2c2e19c0535fa1a14a3
container_end_page
container_issue 16
container_start_page
container_title Journal of applied physics
container_volume 114
creator Mahanta, Nayandeep K
Abramson, Alexis R
Howe, Jane Y
description The thermal flash technique was utilized for measuring the thermal conductivity of vapor-grown carbon nanofibers and graphene nanoplatelets. The vapor-grown carbon nanofibers with stacked-cone morphology and heat treated to 1100 °C and 3000 °C were measured to have thermal conductivities of 1130 W/m K and 1715 W/m K, respectively. The physical dimensions of the constitutive cones determining the mean free path due to static phonon scattering were estimated to be ∼128 nm and ∼176 nm for the low and high heat treatment temperatures, respectively. Static scattering lengths shorter than the Umklapp scattering length indicate ballistic transport within individual cones and limit the thermal conductivities of the nanofibers. Additionally, nanoplatelets of few-layer oxygen intercalated graphene and multi-layer reduced graphene exhibited thermal conductivities of 776 W/m K and 2275 W/m K, respectively. The lower thermal conductivity of few-layer (∼3 layers) graphene is attributed to the presence of intercalating oxygen atoms which introduce covalent character to the interlayer interactions, acting as phonon scattering centers and hence reducing the phonon mean free path. The thermal conductivity measured for multi-layer graphene with ∼30–45 layers lies within range of the thermal conductivities previously reported for bulk graphite.
doi_str_mv 10.1063/1.4827378
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671487196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2129509145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-94df05d411418afbfe3d40ed982cf490a1094aa819959e2c2e19c0535fa1a14a3</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgUQpDPyDSCwwpPgSu7FHVPElVWIps3V1Lm2qxA52UtR_T6CdmE6699Hp9DJ2C3wGfJ4_wkyorMgLdcYmwJVOCyn5OZtwnkGqdKEv2VWMO84BVK4nbLvaUmixSax35WD7el_3h6QljEOgllwfE--S2pVjUA6j22PnQ7oJ_tslFsN6TB06X9VrCjFBVyabgN2WHP3tuwZ7aqiP1-yiwibSzWlO2efL82rxli4_Xt8XT8vU5nLep1qUFZelABCgsFpXlJeCU6lVZiuhOQLXAlGB1lJTZjMCbbnMZYWAIDCfsvvj3S74r4Fib9o6WmoadOSHaGBegFAF6PlI7_7RnR-CG78zGWRacg1CjurhqGzwMQaqTBfqFsPBADe_nRswp87zH-TLdPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129509145</pqid></control><display><type>article</type><title>Thermal conductivity measurements on individual vapor-grown carbon nanofibers and graphene nanoplatelets</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Mahanta, Nayandeep K ; Abramson, Alexis R ; Howe, Jane Y</creator><creatorcontrib>Mahanta, Nayandeep K ; Abramson, Alexis R ; Howe, Jane Y</creatorcontrib><description>The thermal flash technique was utilized for measuring the thermal conductivity of vapor-grown carbon nanofibers and graphene nanoplatelets. The vapor-grown carbon nanofibers with stacked-cone morphology and heat treated to 1100 °C and 3000 °C were measured to have thermal conductivities of 1130 W/m K and 1715 W/m K, respectively. The physical dimensions of the constitutive cones determining the mean free path due to static phonon scattering were estimated to be ∼128 nm and ∼176 nm for the low and high heat treatment temperatures, respectively. Static scattering lengths shorter than the Umklapp scattering length indicate ballistic transport within individual cones and limit the thermal conductivities of the nanofibers. Additionally, nanoplatelets of few-layer oxygen intercalated graphene and multi-layer reduced graphene exhibited thermal conductivities of 776 W/m K and 2275 W/m K, respectively. The lower thermal conductivity of few-layer (∼3 layers) graphene is attributed to the presence of intercalating oxygen atoms which introduce covalent character to the interlayer interactions, acting as phonon scattering centers and hence reducing the phonon mean free path. The thermal conductivity measured for multi-layer graphene with ∼30–45 layers lies within range of the thermal conductivities previously reported for bulk graphite.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4827378</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carbon fibers ; Conductivity ; Cones ; Graphene ; Heat conductivity ; Heat transfer ; Heat treatment ; Interlayers ; Mean free path ; Morphology ; Multilayers ; Nanofibers ; Nanomaterials ; Nanostructure ; Oxygen atoms ; Phonons ; Scattering ; Thermal conductivity ; Thermal energy ; Vapors</subject><ispartof>Journal of applied physics, 2013-10, Vol.114 (16)</ispartof><rights>2013 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-94df05d411418afbfe3d40ed982cf490a1094aa819959e2c2e19c0535fa1a14a3</citedby><cites>FETCH-LOGICAL-c356t-94df05d411418afbfe3d40ed982cf490a1094aa819959e2c2e19c0535fa1a14a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahanta, Nayandeep K</creatorcontrib><creatorcontrib>Abramson, Alexis R</creatorcontrib><creatorcontrib>Howe, Jane Y</creatorcontrib><title>Thermal conductivity measurements on individual vapor-grown carbon nanofibers and graphene nanoplatelets</title><title>Journal of applied physics</title><description>The thermal flash technique was utilized for measuring the thermal conductivity of vapor-grown carbon nanofibers and graphene nanoplatelets. The vapor-grown carbon nanofibers with stacked-cone morphology and heat treated to 1100 °C and 3000 °C were measured to have thermal conductivities of 1130 W/m K and 1715 W/m K, respectively. The physical dimensions of the constitutive cones determining the mean free path due to static phonon scattering were estimated to be ∼128 nm and ∼176 nm for the low and high heat treatment temperatures, respectively. Static scattering lengths shorter than the Umklapp scattering length indicate ballistic transport within individual cones and limit the thermal conductivities of the nanofibers. Additionally, nanoplatelets of few-layer oxygen intercalated graphene and multi-layer reduced graphene exhibited thermal conductivities of 776 W/m K and 2275 W/m K, respectively. The lower thermal conductivity of few-layer (∼3 layers) graphene is attributed to the presence of intercalating oxygen atoms which introduce covalent character to the interlayer interactions, acting as phonon scattering centers and hence reducing the phonon mean free path. The thermal conductivity measured for multi-layer graphene with ∼30–45 layers lies within range of the thermal conductivities previously reported for bulk graphite.</description><subject>Applied physics</subject><subject>Carbon fibers</subject><subject>Conductivity</subject><subject>Cones</subject><subject>Graphene</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heat treatment</subject><subject>Interlayers</subject><subject>Mean free path</subject><subject>Morphology</subject><subject>Multilayers</subject><subject>Nanofibers</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Oxygen atoms</subject><subject>Phonons</subject><subject>Scattering</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Vapors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0D1PwzAQBmALgUQpDPyDSCwwpPgSu7FHVPElVWIps3V1Lm2qxA52UtR_T6CdmE6699Hp9DJ2C3wGfJ4_wkyorMgLdcYmwJVOCyn5OZtwnkGqdKEv2VWMO84BVK4nbLvaUmixSax35WD7el_3h6QljEOgllwfE--S2pVjUA6j22PnQ7oJ_tslFsN6TB06X9VrCjFBVyabgN2WHP3tuwZ7aqiP1-yiwibSzWlO2efL82rxli4_Xt8XT8vU5nLep1qUFZelABCgsFpXlJeCU6lVZiuhOQLXAlGB1lJTZjMCbbnMZYWAIDCfsvvj3S74r4Fib9o6WmoadOSHaGBegFAF6PlI7_7RnR-CG78zGWRacg1CjurhqGzwMQaqTBfqFsPBADe_nRswp87zH-TLdPU</recordid><startdate>20131028</startdate><enddate>20131028</enddate><creator>Mahanta, Nayandeep K</creator><creator>Abramson, Alexis R</creator><creator>Howe, Jane Y</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>20131028</creationdate><title>Thermal conductivity measurements on individual vapor-grown carbon nanofibers and graphene nanoplatelets</title><author>Mahanta, Nayandeep K ; Abramson, Alexis R ; Howe, Jane Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-94df05d411418afbfe3d40ed982cf490a1094aa819959e2c2e19c0535fa1a14a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied physics</topic><topic>Carbon fibers</topic><topic>Conductivity</topic><topic>Cones</topic><topic>Graphene</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heat treatment</topic><topic>Interlayers</topic><topic>Mean free path</topic><topic>Morphology</topic><topic>Multilayers</topic><topic>Nanofibers</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Oxygen atoms</topic><topic>Phonons</topic><topic>Scattering</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahanta, Nayandeep K</creatorcontrib><creatorcontrib>Abramson, Alexis R</creatorcontrib><creatorcontrib>Howe, Jane Y</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahanta, Nayandeep K</au><au>Abramson, Alexis R</au><au>Howe, Jane Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity measurements on individual vapor-grown carbon nanofibers and graphene nanoplatelets</atitle><jtitle>Journal of applied physics</jtitle><date>2013-10-28</date><risdate>2013</risdate><volume>114</volume><issue>16</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The thermal flash technique was utilized for measuring the thermal conductivity of vapor-grown carbon nanofibers and graphene nanoplatelets. The vapor-grown carbon nanofibers with stacked-cone morphology and heat treated to 1100 °C and 3000 °C were measured to have thermal conductivities of 1130 W/m K and 1715 W/m K, respectively. The physical dimensions of the constitutive cones determining the mean free path due to static phonon scattering were estimated to be ∼128 nm and ∼176 nm for the low and high heat treatment temperatures, respectively. Static scattering lengths shorter than the Umklapp scattering length indicate ballistic transport within individual cones and limit the thermal conductivities of the nanofibers. Additionally, nanoplatelets of few-layer oxygen intercalated graphene and multi-layer reduced graphene exhibited thermal conductivities of 776 W/m K and 2275 W/m K, respectively. The lower thermal conductivity of few-layer (∼3 layers) graphene is attributed to the presence of intercalating oxygen atoms which introduce covalent character to the interlayer interactions, acting as phonon scattering centers and hence reducing the phonon mean free path. The thermal conductivity measured for multi-layer graphene with ∼30–45 layers lies within range of the thermal conductivities previously reported for bulk graphite.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4827378</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2013-10, Vol.114 (16)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_miscellaneous_1671487196
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Carbon fibers
Conductivity
Cones
Graphene
Heat conductivity
Heat transfer
Heat treatment
Interlayers
Mean free path
Morphology
Multilayers
Nanofibers
Nanomaterials
Nanostructure
Oxygen atoms
Phonons
Scattering
Thermal conductivity
Thermal energy
Vapors
title Thermal conductivity measurements on individual vapor-grown carbon nanofibers and graphene nanoplatelets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A25%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20measurements%20on%20individual%20vapor-grown%20carbon%20nanofibers%20and%20graphene%20nanoplatelets&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Mahanta,%20Nayandeep%20K&rft.date=2013-10-28&rft.volume=114&rft.issue=16&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4827378&rft_dat=%3Cproquest_cross%3E2129509145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-94df05d411418afbfe3d40ed982cf490a1094aa819959e2c2e19c0535fa1a14a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2129509145&rft_id=info:pmid/&rfr_iscdi=true