Loading…

Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition

Strain relaxation mechanisms were investigated in epitaxial AlN layers deposited on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. It was revealed that epitaxial AlN layers under tensile strain can exhibit micro-cracks and nano-pits. A correlation existed between the amoun...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2013-02, Vol.102 (6)
Main Authors: Bryan, I, Rice, A, Hussey, L, Bryan, Z, Bobea, M, Mita, S, Xie, J, Kirste, R, Collazo, R, Sitar, Z
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-ba84c2708a1d6be4af1443e90dc5b2776f5162ff93b2c9bfaffe6dd3d358d003
cites cdi_FETCH-LOGICAL-c361t-ba84c2708a1d6be4af1443e90dc5b2776f5162ff93b2c9bfaffe6dd3d358d003
container_end_page
container_issue 6
container_start_page
container_title Applied physics letters
container_volume 102
creator Bryan, I
Rice, A
Hussey, L
Bryan, Z
Bobea, M
Mita, S
Xie, J
Kirste, R
Collazo, R
Sitar, Z
description Strain relaxation mechanisms were investigated in epitaxial AlN layers deposited on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. It was revealed that epitaxial AlN layers under tensile strain can exhibit micro-cracks and nano-pits. A correlation existed between the amount of strain and number of pits in localized areas. Pit densities as high as 1010 cm-2 were observed in areas where the tensile strain reached similar to 0.4%, while unstrained areas of the film showed step flow growth. These nano-pits occurred as a strain relaxation mechanism and were not related to intrinsic defects, such as threading dislocations or inversion domains.
doi_str_mv 10.1063/1.4792694
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671490182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671490182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-ba84c2708a1d6be4af1443e90dc5b2776f5162ff93b2c9bfaffe6dd3d358d003</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqUw8A88wpDisxMnGasKClIFA90txx-tkfOB7SL670lpmdENd6d79Ej3InQLZAaEsweY5WVNeZ2foQmQsswYQHWOJoQQlvG6gEt0FePHuBaUsQlq3lOQrsPBePktk-s73Ozx4FJy3QaPh7l_xWk7Dtb5NmJthj66ZPQBa02Svg8b2TmF1da0TkmPv-TQhz9wFF6jCyt9NDenPkXrp8f14jlbvS1fFvNVphiHlDWyyhUtSSVB88bk0kKeM1MTrYqGliW3BXBqbc0aqurGSmsN15ppVlR6_G6K7o7aIfSfOxOTaF1UxnvZmX4XBfAS8ppARf9HGR2LsV_r_RFVoY8xGCuG4FoZ9gKIOCQuQJwSZz-SNnPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323233300</pqid></control><display><type>article</type><title>Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP Journals (American Institute of Physics)</source><creator>Bryan, I ; Rice, A ; Hussey, L ; Bryan, Z ; Bobea, M ; Mita, S ; Xie, J ; Kirste, R ; Collazo, R ; Sitar, Z</creator><creatorcontrib>Bryan, I ; Rice, A ; Hussey, L ; Bryan, Z ; Bobea, M ; Mita, S ; Xie, J ; Kirste, R ; Collazo, R ; Sitar, Z</creatorcontrib><description>Strain relaxation mechanisms were investigated in epitaxial AlN layers deposited on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. It was revealed that epitaxial AlN layers under tensile strain can exhibit micro-cracks and nano-pits. A correlation existed between the amount of strain and number of pits in localized areas. Pit densities as high as 1010 cm-2 were observed in areas where the tensile strain reached similar to 0.4%, while unstrained areas of the film showed step flow growth. These nano-pits occurred as a strain relaxation mechanism and were not related to intrinsic defects, such as threading dislocations or inversion domains.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4792694</identifier><language>eng</language><subject>Aluminum nitride ; Deposition ; Metalorganic chemical vapor deposition ; Nanocomposites ; Nanomaterials ; Nanostructure ; Strain ; Strain relaxation ; Thin films</subject><ispartof>Applied physics letters, 2013-02, Vol.102 (6)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-ba84c2708a1d6be4af1443e90dc5b2776f5162ff93b2c9bfaffe6dd3d358d003</citedby><cites>FETCH-LOGICAL-c361t-ba84c2708a1d6be4af1443e90dc5b2776f5162ff93b2c9bfaffe6dd3d358d003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,779,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bryan, I</creatorcontrib><creatorcontrib>Rice, A</creatorcontrib><creatorcontrib>Hussey, L</creatorcontrib><creatorcontrib>Bryan, Z</creatorcontrib><creatorcontrib>Bobea, M</creatorcontrib><creatorcontrib>Mita, S</creatorcontrib><creatorcontrib>Xie, J</creatorcontrib><creatorcontrib>Kirste, R</creatorcontrib><creatorcontrib>Collazo, R</creatorcontrib><creatorcontrib>Sitar, Z</creatorcontrib><title>Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition</title><title>Applied physics letters</title><description>Strain relaxation mechanisms were investigated in epitaxial AlN layers deposited on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. It was revealed that epitaxial AlN layers under tensile strain can exhibit micro-cracks and nano-pits. A correlation existed between the amount of strain and number of pits in localized areas. Pit densities as high as 1010 cm-2 were observed in areas where the tensile strain reached similar to 0.4%, while unstrained areas of the film showed step flow growth. These nano-pits occurred as a strain relaxation mechanism and were not related to intrinsic defects, such as threading dislocations or inversion domains.</description><subject>Aluminum nitride</subject><subject>Deposition</subject><subject>Metalorganic chemical vapor deposition</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Strain</subject><subject>Strain relaxation</subject><subject>Thin films</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqUw8A88wpDisxMnGasKClIFA90txx-tkfOB7SL670lpmdENd6d79Ej3InQLZAaEsweY5WVNeZ2foQmQsswYQHWOJoQQlvG6gEt0FePHuBaUsQlq3lOQrsPBePktk-s73Ozx4FJy3QaPh7l_xWk7Dtb5NmJthj66ZPQBa02Svg8b2TmF1da0TkmPv-TQhz9wFF6jCyt9NDenPkXrp8f14jlbvS1fFvNVphiHlDWyyhUtSSVB88bk0kKeM1MTrYqGliW3BXBqbc0aqurGSmsN15ppVlR6_G6K7o7aIfSfOxOTaF1UxnvZmX4XBfAS8ppARf9HGR2LsV_r_RFVoY8xGCuG4FoZ9gKIOCQuQJwSZz-SNnPg</recordid><startdate>20130211</startdate><enddate>20130211</enddate><creator>Bryan, I</creator><creator>Rice, A</creator><creator>Hussey, L</creator><creator>Bryan, Z</creator><creator>Bobea, M</creator><creator>Mita, S</creator><creator>Xie, J</creator><creator>Kirste, R</creator><creator>Collazo, R</creator><creator>Sitar, Z</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130211</creationdate><title>Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition</title><author>Bryan, I ; Rice, A ; Hussey, L ; Bryan, Z ; Bobea, M ; Mita, S ; Xie, J ; Kirste, R ; Collazo, R ; Sitar, Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-ba84c2708a1d6be4af1443e90dc5b2776f5162ff93b2c9bfaffe6dd3d358d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum nitride</topic><topic>Deposition</topic><topic>Metalorganic chemical vapor deposition</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Strain</topic><topic>Strain relaxation</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryan, I</creatorcontrib><creatorcontrib>Rice, A</creatorcontrib><creatorcontrib>Hussey, L</creatorcontrib><creatorcontrib>Bryan, Z</creatorcontrib><creatorcontrib>Bobea, M</creatorcontrib><creatorcontrib>Mita, S</creatorcontrib><creatorcontrib>Xie, J</creatorcontrib><creatorcontrib>Kirste, R</creatorcontrib><creatorcontrib>Collazo, R</creatorcontrib><creatorcontrib>Sitar, Z</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryan, I</au><au>Rice, A</au><au>Hussey, L</au><au>Bryan, Z</au><au>Bobea, M</au><au>Mita, S</au><au>Xie, J</au><au>Kirste, R</au><au>Collazo, R</au><au>Sitar, Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition</atitle><jtitle>Applied physics letters</jtitle><date>2013-02-11</date><risdate>2013</risdate><volume>102</volume><issue>6</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Strain relaxation mechanisms were investigated in epitaxial AlN layers deposited on (0001)-oriented AlN substrates by metalorganic chemical vapor deposition. It was revealed that epitaxial AlN layers under tensile strain can exhibit micro-cracks and nano-pits. A correlation existed between the amount of strain and number of pits in localized areas. Pit densities as high as 1010 cm-2 were observed in areas where the tensile strain reached similar to 0.4%, while unstrained areas of the film showed step flow growth. These nano-pits occurred as a strain relaxation mechanism and were not related to intrinsic defects, such as threading dislocations or inversion domains.</abstract><doi>10.1063/1.4792694</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2013-02, Vol.102 (6)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_miscellaneous_1671490182
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP Journals (American Institute of Physics)
subjects Aluminum nitride
Deposition
Metalorganic chemical vapor deposition
Nanocomposites
Nanomaterials
Nanostructure
Strain
Strain relaxation
Thin films
title Strain relaxation by pitting in AlN thin films deposited by metalorganic chemical vapor deposition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20relaxation%20by%20pitting%20in%20AlN%20thin%20films%20deposited%20by%20metalorganic%20chemical%20vapor%20deposition&rft.jtitle=Applied%20physics%20letters&rft.au=Bryan,%20I&rft.date=2013-02-11&rft.volume=102&rft.issue=6&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4792694&rft_dat=%3Cproquest_cross%3E1671490182%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-ba84c2708a1d6be4af1443e90dc5b2776f5162ff93b2c9bfaffe6dd3d358d003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1323233300&rft_id=info:pmid/&rfr_iscdi=true