Loading…

Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds

► Metallurgical and geometric stress concentrators are identified in cross-section. ► Hook morphology and thermal input exhibit a strong influence over joint strength. ► Plastic flow originates around the recrystallized zone where tensile stresses are higher. ► Crack may propagate through or totally...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology 2013-04, Vol.213 (4), p.515-521
Main Authors: Campanelli, Leonardo Contri, Suhuddin, Uceu Fuad Hasan, Antonialli, Armando Ítalo Sette, dos Santos, Jorge Fernandez, de Alcântara, Nelson Guedes, Bolfarini, Claudemiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-9465a69679645969f0f5d612a327d1a06b9548cae53f875ad4fe5fe63d59bcb33
cites cdi_FETCH-LOGICAL-c434t-9465a69679645969f0f5d612a327d1a06b9548cae53f875ad4fe5fe63d59bcb33
container_end_page 521
container_issue 4
container_start_page 515
container_title Journal of materials processing technology
container_volume 213
creator Campanelli, Leonardo Contri
Suhuddin, Uceu Fuad Hasan
Antonialli, Armando Ítalo Sette
dos Santos, Jorge Fernandez
de Alcântara, Nelson Guedes
Bolfarini, Claudemiro
description ► Metallurgical and geometric stress concentrators are identified in cross-section. ► Hook morphology and thermal input exhibit a strong influence over joint strength. ► Plastic flow originates around the recrystallized zone where tensile stresses are higher. ► Crack may propagate through or totally around the welded zone under shear loading. ► Fracture surfaces indicate extensive plastic deformation under shear. Microstructural features were studied along the cross-section of AZ31 magnesium alloy friction spot welded joints made using different combinations of welding parameters. Static lap shear testing was performed to evaluate the mechanical properties of the welded joints, and the resulting fracture mechanisms and crack propagation paths were fully examined. Failure load is optimized when the welding procedure is performed with the combination of parameters that maximizes the material mixing, the size of fully metallurgical bonding and simultaneously minimizes the vertical displacement of hook region. The welds demonstrate three failure modes during lap shear testing: through the weld and non-circumferential pull-out modes, in which crack propagation crosses the recrystallized zone, and circumferential pull-out mode, around this zone.
doi_str_mv 10.1016/j.jmatprotec.2012.11.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671493288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013612003275</els_id><sourcerecordid>1283668719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-9465a69679645969f0f5d612a327d1a06b9548cae53f875ad4fe5fe63d59bcb33</originalsourceid><addsrcrecordid>eNqFkD1PwzAURTOARCn8B48sCX5x4thjqfiSihASLCyW6zwXR0kc7ATUf09QkRg73eXcK92TJARoBhT4dZM1nR6H4Ec0WU4hzwAySvOTZEFlXqQUGD9LzmNsKIWKCrFIXp5w1G07hd2e6L4mHZoP3TujWzJgsD50ujdIvCWrdwak07seo5s6Mpf8ntjgzOh8T-LgR_KNbR0vklOr24iXf7lM3u5uX9cP6eb5_nG92qSmYMWYyoKXmkteSV6UkktLbVlzyDXLqxo05VtZFsJoLJkVVanrwmJpkbO6lFuzZWyZXB1257-fE8ZRdS4abFvdo5-iAl5BIVkuxHE0F4xzUYGcUXFATfAxBrRqCK7TYa-Aql_JqlH_ktWvZAWgZslz9eZQxfn1l8OgonE426tdQDOq2rvjIz_ieoy2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283668719</pqid></control><display><type>article</type><title>Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds</title><source>ScienceDirect Journals</source><creator>Campanelli, Leonardo Contri ; Suhuddin, Uceu Fuad Hasan ; Antonialli, Armando Ítalo Sette ; dos Santos, Jorge Fernandez ; de Alcântara, Nelson Guedes ; Bolfarini, Claudemiro</creator><creatorcontrib>Campanelli, Leonardo Contri ; Suhuddin, Uceu Fuad Hasan ; Antonialli, Armando Ítalo Sette ; dos Santos, Jorge Fernandez ; de Alcântara, Nelson Guedes ; Bolfarini, Claudemiro</creatorcontrib><description>► Metallurgical and geometric stress concentrators are identified in cross-section. ► Hook morphology and thermal input exhibit a strong influence over joint strength. ► Plastic flow originates around the recrystallized zone where tensile stresses are higher. ► Crack may propagate through or totally around the welded zone under shear loading. ► Fracture surfaces indicate extensive plastic deformation under shear. Microstructural features were studied along the cross-section of AZ31 magnesium alloy friction spot welded joints made using different combinations of welding parameters. Static lap shear testing was performed to evaluate the mechanical properties of the welded joints, and the resulting fracture mechanisms and crack propagation paths were fully examined. Failure load is optimized when the welding procedure is performed with the combination of parameters that maximizes the material mixing, the size of fully metallurgical bonding and simultaneously minimizes the vertical displacement of hook region. The welds demonstrate three failure modes during lap shear testing: through the weld and non-circumferential pull-out modes, in which crack propagation crosses the recrystallized zone, and circumferential pull-out mode, around this zone.</description><identifier>ISSN: 0924-0136</identifier><identifier>DOI: 10.1016/j.jmatprotec.2012.11.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>AZ31 magnesium alloy ; Crack propagation ; Failure ; Failure behavior ; Fracture mechanics ; Friction ; Friction spot welding ; Magnesium base alloys ; Metallurgy ; Shear ; Weld strength ; Welded joints</subject><ispartof>Journal of materials processing technology, 2013-04, Vol.213 (4), p.515-521</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-9465a69679645969f0f5d612a327d1a06b9548cae53f875ad4fe5fe63d59bcb33</citedby><cites>FETCH-LOGICAL-c434t-9465a69679645969f0f5d612a327d1a06b9548cae53f875ad4fe5fe63d59bcb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Campanelli, Leonardo Contri</creatorcontrib><creatorcontrib>Suhuddin, Uceu Fuad Hasan</creatorcontrib><creatorcontrib>Antonialli, Armando Ítalo Sette</creatorcontrib><creatorcontrib>dos Santos, Jorge Fernandez</creatorcontrib><creatorcontrib>de Alcântara, Nelson Guedes</creatorcontrib><creatorcontrib>Bolfarini, Claudemiro</creatorcontrib><title>Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds</title><title>Journal of materials processing technology</title><description>► Metallurgical and geometric stress concentrators are identified in cross-section. ► Hook morphology and thermal input exhibit a strong influence over joint strength. ► Plastic flow originates around the recrystallized zone where tensile stresses are higher. ► Crack may propagate through or totally around the welded zone under shear loading. ► Fracture surfaces indicate extensive plastic deformation under shear. Microstructural features were studied along the cross-section of AZ31 magnesium alloy friction spot welded joints made using different combinations of welding parameters. Static lap shear testing was performed to evaluate the mechanical properties of the welded joints, and the resulting fracture mechanisms and crack propagation paths were fully examined. Failure load is optimized when the welding procedure is performed with the combination of parameters that maximizes the material mixing, the size of fully metallurgical bonding and simultaneously minimizes the vertical displacement of hook region. The welds demonstrate three failure modes during lap shear testing: through the weld and non-circumferential pull-out modes, in which crack propagation crosses the recrystallized zone, and circumferential pull-out mode, around this zone.</description><subject>AZ31 magnesium alloy</subject><subject>Crack propagation</subject><subject>Failure</subject><subject>Failure behavior</subject><subject>Fracture mechanics</subject><subject>Friction</subject><subject>Friction spot welding</subject><subject>Magnesium base alloys</subject><subject>Metallurgy</subject><subject>Shear</subject><subject>Weld strength</subject><subject>Welded joints</subject><issn>0924-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURTOARCn8B48sCX5x4thjqfiSihASLCyW6zwXR0kc7ATUf09QkRg73eXcK92TJARoBhT4dZM1nR6H4Ec0WU4hzwAySvOTZEFlXqQUGD9LzmNsKIWKCrFIXp5w1G07hd2e6L4mHZoP3TujWzJgsD50ujdIvCWrdwak07seo5s6Mpf8ntjgzOh8T-LgR_KNbR0vklOr24iXf7lM3u5uX9cP6eb5_nG92qSmYMWYyoKXmkteSV6UkktLbVlzyDXLqxo05VtZFsJoLJkVVanrwmJpkbO6lFuzZWyZXB1257-fE8ZRdS4abFvdo5-iAl5BIVkuxHE0F4xzUYGcUXFATfAxBrRqCK7TYa-Aql_JqlH_ktWvZAWgZslz9eZQxfn1l8OgonE426tdQDOq2rvjIz_ieoy2</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Campanelli, Leonardo Contri</creator><creator>Suhuddin, Uceu Fuad Hasan</creator><creator>Antonialli, Armando Ítalo Sette</creator><creator>dos Santos, Jorge Fernandez</creator><creator>de Alcântara, Nelson Guedes</creator><creator>Bolfarini, Claudemiro</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130401</creationdate><title>Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds</title><author>Campanelli, Leonardo Contri ; Suhuddin, Uceu Fuad Hasan ; Antonialli, Armando Ítalo Sette ; dos Santos, Jorge Fernandez ; de Alcântara, Nelson Guedes ; Bolfarini, Claudemiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-9465a69679645969f0f5d612a327d1a06b9548cae53f875ad4fe5fe63d59bcb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>AZ31 magnesium alloy</topic><topic>Crack propagation</topic><topic>Failure</topic><topic>Failure behavior</topic><topic>Fracture mechanics</topic><topic>Friction</topic><topic>Friction spot welding</topic><topic>Magnesium base alloys</topic><topic>Metallurgy</topic><topic>Shear</topic><topic>Weld strength</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campanelli, Leonardo Contri</creatorcontrib><creatorcontrib>Suhuddin, Uceu Fuad Hasan</creatorcontrib><creatorcontrib>Antonialli, Armando Ítalo Sette</creatorcontrib><creatorcontrib>dos Santos, Jorge Fernandez</creatorcontrib><creatorcontrib>de Alcântara, Nelson Guedes</creatorcontrib><creatorcontrib>Bolfarini, Claudemiro</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campanelli, Leonardo Contri</au><au>Suhuddin, Uceu Fuad Hasan</au><au>Antonialli, Armando Ítalo Sette</au><au>dos Santos, Jorge Fernandez</au><au>de Alcântara, Nelson Guedes</au><au>Bolfarini, Claudemiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds</atitle><jtitle>Journal of materials processing technology</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>213</volume><issue>4</issue><spage>515</spage><epage>521</epage><pages>515-521</pages><issn>0924-0136</issn><abstract>► Metallurgical and geometric stress concentrators are identified in cross-section. ► Hook morphology and thermal input exhibit a strong influence over joint strength. ► Plastic flow originates around the recrystallized zone where tensile stresses are higher. ► Crack may propagate through or totally around the welded zone under shear loading. ► Fracture surfaces indicate extensive plastic deformation under shear. Microstructural features were studied along the cross-section of AZ31 magnesium alloy friction spot welded joints made using different combinations of welding parameters. Static lap shear testing was performed to evaluate the mechanical properties of the welded joints, and the resulting fracture mechanisms and crack propagation paths were fully examined. Failure load is optimized when the welding procedure is performed with the combination of parameters that maximizes the material mixing, the size of fully metallurgical bonding and simultaneously minimizes the vertical displacement of hook region. The welds demonstrate three failure modes during lap shear testing: through the weld and non-circumferential pull-out modes, in which crack propagation crosses the recrystallized zone, and circumferential pull-out mode, around this zone.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2012.11.002</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2013-04, Vol.213 (4), p.515-521
issn 0924-0136
language eng
recordid cdi_proquest_miscellaneous_1671493288
source ScienceDirect Journals
subjects AZ31 magnesium alloy
Crack propagation
Failure
Failure behavior
Fracture mechanics
Friction
Friction spot welding
Magnesium base alloys
Metallurgy
Shear
Weld strength
Welded joints
title Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metallurgy%20and%20mechanical%20performance%20of%20AZ31%20magnesium%20alloy%20friction%20spot%20welds&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Campanelli,%20Leonardo%20Contri&rft.date=2013-04-01&rft.volume=213&rft.issue=4&rft.spage=515&rft.epage=521&rft.pages=515-521&rft.issn=0924-0136&rft_id=info:doi/10.1016/j.jmatprotec.2012.11.002&rft_dat=%3Cproquest_cross%3E1283668719%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-9465a69679645969f0f5d612a327d1a06b9548cae53f875ad4fe5fe63d59bcb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1283668719&rft_id=info:pmid/&rfr_iscdi=true