Loading…
Investigation on the thermoelectric properties of nanostructured Cr1axTixSi2Cr1axTixSi2
CrSi2 material is outstanding because of its thermoelectric properties and also because of its many optimization routes. Indeed, its thermal conductivity at room temperature is about 9 W ma1 Ka1 with a ZT of 0.25. In this paper we propose to decrease the thermal conductivity by nanostructuration and...
Saved in:
Published in: | Journal of solid state chemistry 2013-03, Vol.199, p.90-95 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CrSi2 material is outstanding because of its thermoelectric properties and also because of its many optimization routes. Indeed, its thermal conductivity at room temperature is about 9 W ma1 Ka1 with a ZT of 0.25. In this paper we propose to decrease the thermal conductivity by nanostructuration and compensate the electron scattering by increasing the charge carrier concentration with Ti. The process which permitted to get nanocrystallite of about 14 nm is presented. After cold pressing and sintering the average crystallite size reaches 50 nm with a porosity of 70%. Nanostructuring and porosity to a lesser extent lead to a strong decrease of the thermal conductivity up to 0.9A-0.15 W ma1 Ka1 for pure CrSi2. A significant enhancement of the power factor from 1.25 mu Wcma1Ka2 for pure nano-CrSi2 to 2.5 mu Wcma1Ka2 for nano-Cr0.90Ti0.10Si2 was obtained. The stability of the different phases is also evaluated by comparing experiments with ab initio calculations. |
---|---|
ISSN: | 0022-4596 |
DOI: | 10.1016/j.jssc.2012.12.004 |