Loading…

Optical fiber chemical sensing of Hg(II) ions in aqueous samples using a microfluidic device containing a selective tripodal chromoionophore-PVC film

A novel methodology for the determination of Hg(II) ions was developed based on optical fiber chemical sensing in a microfluidic device containing a selective tripodal chromoionophore (i.e. tris[2-(4-phenyldiazenyl)phenylamino)ethoxy]cyclotriveratrylene/TPPECTV)-PVC film. Absorbance detection was pe...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2011-10, Vol.157 (2), p.438-443
Main Authors: Nuriman, Kuswandi, Bambang, Verboom, Willem
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel methodology for the determination of Hg(II) ions was developed based on optical fiber chemical sensing in a microfluidic device containing a selective tripodal chromoionophore (i.e. tris[2-(4-phenyldiazenyl)phenylamino)ethoxy]cyclotriveratrylene/TPPECTV)-PVC film. Absorbance detection was performed by incorporating a single optical fiber on the top and the bottom of the detection zone of the microfluidic device. In this micro-sensing system, the intensity of the absorption maximum at 495 nm of the TPPECTV–Hg(II) complex linearly increases as a function of the Hg(II) ion concentration in the range 1.0 × 10 −6 to 2.5 × 10 −4 M, with a detection limit of 0.5 μM. Interference from other heavy metal ions was not observed at significant levels. The absorbance results of the detection of Hg(II) ions in environmental water samples (river water) are in good agreement with those obtained by a macro-scale system (cold vapor atomic absorption spectrometry/CVAAS).
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2011.04.084