Loading…

Pore structure and permeability of hardened calcium aluminate cement pastes of low w/c ratio

The conversion of hydrated calcium aluminate cement (CAC) leads to an increase of its porosity which results in lower strength and higher permeability. Due to particular failures in the past, caused by conversion of CAC concretes, their use is sometimes considered to be not reliable. To evaluate the...

Full description

Saved in:
Bibliographic Details
Published in:Materials and structures 2013-09, Vol.46 (9), p.1497-1506
Main Authors: Gluth, G. J. G., Hillemeier, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The conversion of hydrated calcium aluminate cement (CAC) leads to an increase of its porosity which results in lower strength and higher permeability. Due to particular failures in the past, caused by conversion of CAC concretes, their use is sometimes considered to be not reliable. To evaluate the durability of converted CAC, pastes of two CACs were prepared at low w / c ratios (0.25 and 0.35), heated to 105 °C for 15 days and investigated by means of helium pycnometry, mercury porosimetry and nitrogen adsorption as well as by air permeability measurements. The results were compared to the pore structure properties and permeabilities of hardened Portland cement (OPC) pastes. At identical w / c , CAC pastes and OPC pastes exhibited similar open and total porosities. The threshold radii of the CAC pastes were about one order of magnitude greater while the hydraulic radii of their open pore system were smaller. The CAC pastes possessed somewhat smaller permeabilities than the OPC pastes and can thus be regarded as being as durable as the latter in this respect. From comparison of pore structure parameters and permeabilities it was furthermore concluded that significant pore structure damage occurs in the CAC pastes during mercury porosimetry measurements and therefore the measured threshold radii have to be considered as unreliable.
ISSN:1359-5997
1871-6873
DOI:10.1617/s11527-012-9991-2