Loading…

Coupling a genetic algorithm with the distributed arrival-time control for the JIT dynamic scheduling of flexible job-shops

In order to increase customer satisfaction and competitiveness, manufacturing systems need to combine flexibility with Just-in-Time (JIT) production. Until now, research on JIT scheduling problems has been mostly limited to high volume assembly lines rather than job-shop-like systems, due to their c...

Full description

Saved in:
Bibliographic Details
Published in:International journal of production research 2014-06, Vol.52 (12), p.3688-3709
Main Authors: Zambrano Rey, Gabriel, Bekrar, Abdelghani, Prabhu, Vittaldas, Trentesaux, Damien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to increase customer satisfaction and competitiveness, manufacturing systems need to combine flexibility with Just-in-Time (JIT) production. Until now, research on JIT scheduling problems has been mostly limited to high volume assembly lines rather than job-shop-like systems, due to their combinatorial complexity. In this paper, we propose a generic strategy for dynamically controlling task schedules by coupling genetic algorithms and distributed arrival-time control to optimise JIT performance. We explore two such hybrid approaches: a sequential approach where the two algorithms work separately and an integrated approach where the distributed arrival time control is embedded into the genetic algorithm. Performance of these approaches is benchmarked with quadratic linear programme solutions to get a gauge of their relative strengths in a static environment. Results from applying these approaches to a job-shop-like automated cell verify their effectiveness for JIT manufacturing under realistic dynamically changing environment.
ISSN:0020-7543
1366-588X
DOI:10.1080/00207543.2014.881575