Loading…
Polymer-immobilized nanoparticles
•Polymer-immobilized nanoparticle hybrids are unique systems for a broad range of applications.•Multistep and one pot strategies are available to design polymer–nanoparticle hybrids.•Applications include separation, sensing, extraction and catalysis.•Unprecedented performances are achieved via the s...
Saved in:
Published in: | Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2013-12, Vol.439, p.43-68 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693 |
container_end_page | 68 |
container_issue | |
container_start_page | 43 |
container_title | Colloids and surfaces. A, Physicochemical and engineering aspects |
container_volume | 439 |
creator | Mahouche-Chergui, Samia Guerrouache, Mohamed Carbonnier, Benjamin Chehimi, Mohamed M. |
description | •Polymer-immobilized nanoparticle hybrids are unique systems for a broad range of applications.•Multistep and one pot strategies are available to design polymer–nanoparticle hybrids.•Applications include separation, sensing, extraction and catalysis.•Unprecedented performances are achieved via the synergy of polymers and nanoparticles.
We review methods to prepare polymer-immobilized nanoparticles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nanoparticles. The latter range from soft biomacromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nanoparticles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nanoparticles, while polymers provide excellent platforms for dispersing nanoparticles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties. |
doi_str_mv | 10.1016/j.colsurfa.2013.04.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671512284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775713002963</els_id><sourcerecordid>1671512284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693</originalsourceid><addsrcrecordid>eNqFUEtLxDAQDqLguvoXfNy8tE6aNGlvyuILFhR0zyFNJ5KlbdakK6y_3izVs6dvYL7HzEfIOYWcAhU369z4Lm6D1XkBlOXA8wQHZEYryTLOyvqQzKAuZCZlKY_JSYxrAOClrGfk6tV3ux5D5vreN65z39heDnrwGx1GZzqMp-TI6i7i2S_Oyerh_n3xlC1fHp8Xd8vMcBBjxpoqpULJKE1jSYuCl2iAN0LWrWRUCFFwtI1GmtbMSmltVWvWCihbJmo2J9eT7yb4zy3GUfUuGuw6PaDfRkWFpHvbiieqmKgm-BgDWrUJrtdhpyiofSdqrf46UftOFHCVIAkvJqHVXumP4KJavSVCCUBlzdJdc3I7MTC9-uUwqGgcDgZbF9CMqvXuv5AfSJJ1Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671512284</pqid></control><display><type>article</type><title>Polymer-immobilized nanoparticles</title><source>ScienceDirect Freedom Collection</source><creator>Mahouche-Chergui, Samia ; Guerrouache, Mohamed ; Carbonnier, Benjamin ; Chehimi, Mohamed M.</creator><creatorcontrib>Mahouche-Chergui, Samia ; Guerrouache, Mohamed ; Carbonnier, Benjamin ; Chehimi, Mohamed M.</creatorcontrib><description>•Polymer-immobilized nanoparticle hybrids are unique systems for a broad range of applications.•Multistep and one pot strategies are available to design polymer–nanoparticle hybrids.•Applications include separation, sensing, extraction and catalysis.•Unprecedented performances are achieved via the synergy of polymers and nanoparticles.
We review methods to prepare polymer-immobilized nanoparticles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nanoparticles. The latter range from soft biomacromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nanoparticles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nanoparticles, while polymers provide excellent platforms for dispersing nanoparticles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2013.04.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biomolecules ; brushes ; Buckminsterfullerene ; Catalysis ; catalytic activity ; chemical bonding ; colloids ; Detection ; DNA ; electrostatic interactions ; Fullerenes ; Immobilized nanoparticles ; Nanoparticles ; physicochemical properties ; Platforms ; Polymeric supports ; polymers ; proteins ; Semiconductors ; Sensing ; Separation</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2013-12, Vol.439, p.43-68</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693</citedby><cites>FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahouche-Chergui, Samia</creatorcontrib><creatorcontrib>Guerrouache, Mohamed</creatorcontrib><creatorcontrib>Carbonnier, Benjamin</creatorcontrib><creatorcontrib>Chehimi, Mohamed M.</creatorcontrib><title>Polymer-immobilized nanoparticles</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>•Polymer-immobilized nanoparticle hybrids are unique systems for a broad range of applications.•Multistep and one pot strategies are available to design polymer–nanoparticle hybrids.•Applications include separation, sensing, extraction and catalysis.•Unprecedented performances are achieved via the synergy of polymers and nanoparticles.
We review methods to prepare polymer-immobilized nanoparticles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nanoparticles. The latter range from soft biomacromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nanoparticles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nanoparticles, while polymers provide excellent platforms for dispersing nanoparticles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.</description><subject>Biomolecules</subject><subject>brushes</subject><subject>Buckminsterfullerene</subject><subject>Catalysis</subject><subject>catalytic activity</subject><subject>chemical bonding</subject><subject>colloids</subject><subject>Detection</subject><subject>DNA</subject><subject>electrostatic interactions</subject><subject>Fullerenes</subject><subject>Immobilized nanoparticles</subject><subject>Nanoparticles</subject><subject>physicochemical properties</subject><subject>Platforms</subject><subject>Polymeric supports</subject><subject>polymers</subject><subject>proteins</subject><subject>Semiconductors</subject><subject>Sensing</subject><subject>Separation</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLxDAQDqLguvoXfNy8tE6aNGlvyuILFhR0zyFNJ5KlbdakK6y_3izVs6dvYL7HzEfIOYWcAhU369z4Lm6D1XkBlOXA8wQHZEYryTLOyvqQzKAuZCZlKY_JSYxrAOClrGfk6tV3ux5D5vreN65z39heDnrwGx1GZzqMp-TI6i7i2S_Oyerh_n3xlC1fHp8Xd8vMcBBjxpoqpULJKE1jSYuCl2iAN0LWrWRUCFFwtI1GmtbMSmltVWvWCihbJmo2J9eT7yb4zy3GUfUuGuw6PaDfRkWFpHvbiieqmKgm-BgDWrUJrtdhpyiofSdqrf46UftOFHCVIAkvJqHVXumP4KJavSVCCUBlzdJdc3I7MTC9-uUwqGgcDgZbF9CMqvXuv5AfSJJ1Ww</recordid><startdate>20131220</startdate><enddate>20131220</enddate><creator>Mahouche-Chergui, Samia</creator><creator>Guerrouache, Mohamed</creator><creator>Carbonnier, Benjamin</creator><creator>Chehimi, Mohamed M.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131220</creationdate><title>Polymer-immobilized nanoparticles</title><author>Mahouche-Chergui, Samia ; Guerrouache, Mohamed ; Carbonnier, Benjamin ; Chehimi, Mohamed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomolecules</topic><topic>brushes</topic><topic>Buckminsterfullerene</topic><topic>Catalysis</topic><topic>catalytic activity</topic><topic>chemical bonding</topic><topic>colloids</topic><topic>Detection</topic><topic>DNA</topic><topic>electrostatic interactions</topic><topic>Fullerenes</topic><topic>Immobilized nanoparticles</topic><topic>Nanoparticles</topic><topic>physicochemical properties</topic><topic>Platforms</topic><topic>Polymeric supports</topic><topic>polymers</topic><topic>proteins</topic><topic>Semiconductors</topic><topic>Sensing</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahouche-Chergui, Samia</creatorcontrib><creatorcontrib>Guerrouache, Mohamed</creatorcontrib><creatorcontrib>Carbonnier, Benjamin</creatorcontrib><creatorcontrib>Chehimi, Mohamed M.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahouche-Chergui, Samia</au><au>Guerrouache, Mohamed</au><au>Carbonnier, Benjamin</au><au>Chehimi, Mohamed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer-immobilized nanoparticles</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2013-12-20</date><risdate>2013</risdate><volume>439</volume><spage>43</spage><epage>68</epage><pages>43-68</pages><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>•Polymer-immobilized nanoparticle hybrids are unique systems for a broad range of applications.•Multistep and one pot strategies are available to design polymer–nanoparticle hybrids.•Applications include separation, sensing, extraction and catalysis.•Unprecedented performances are achieved via the synergy of polymers and nanoparticles.
We review methods to prepare polymer-immobilized nanoparticles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nanoparticles. The latter range from soft biomacromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nanoparticles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nanoparticles, while polymers provide excellent platforms for dispersing nanoparticles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2013.04.013</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7757 |
ispartof | Colloids and surfaces. A, Physicochemical and engineering aspects, 2013-12, Vol.439, p.43-68 |
issn | 0927-7757 1873-4359 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671512284 |
source | ScienceDirect Freedom Collection |
subjects | Biomolecules brushes Buckminsterfullerene Catalysis catalytic activity chemical bonding colloids Detection DNA electrostatic interactions Fullerenes Immobilized nanoparticles Nanoparticles physicochemical properties Platforms Polymeric supports polymers proteins Semiconductors Sensing Separation |
title | Polymer-immobilized nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer-immobilized%20nanoparticles&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Mahouche-Chergui,%20Samia&rft.date=2013-12-20&rft.volume=439&rft.spage=43&rft.epage=68&rft.pages=43-68&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2013.04.013&rft_dat=%3Cproquest_cross%3E1671512284%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671512284&rft_id=info:pmid/&rfr_iscdi=true |