Loading…

Polymer-immobilized nanoparticles

•Polymer-immobilized nanoparticle hybrids are unique systems for a broad range of applications.•Multistep and one pot strategies are available to design polymer–nanoparticle hybrids.•Applications include separation, sensing, extraction and catalysis.•Unprecedented performances are achieved via the s...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2013-12, Vol.439, p.43-68
Main Authors: Mahouche-Chergui, Samia, Guerrouache, Mohamed, Carbonnier, Benjamin, Chehimi, Mohamed M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693
cites cdi_FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693
container_end_page 68
container_issue
container_start_page 43
container_title Colloids and surfaces. A, Physicochemical and engineering aspects
container_volume 439
creator Mahouche-Chergui, Samia
Guerrouache, Mohamed
Carbonnier, Benjamin
Chehimi, Mohamed M.
description •Polymer-immobilized nanoparticle hybrids are unique systems for a broad range of applications.•Multistep and one pot strategies are available to design polymer–nanoparticle hybrids.•Applications include separation, sensing, extraction and catalysis.•Unprecedented performances are achieved via the synergy of polymers and nanoparticles. We review methods to prepare polymer-immobilized nanoparticles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nanoparticles. The latter range from soft biomacromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nanoparticles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nanoparticles, while polymers provide excellent platforms for dispersing nanoparticles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.
doi_str_mv 10.1016/j.colsurfa.2013.04.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671512284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775713002963</els_id><sourcerecordid>1671512284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693</originalsourceid><addsrcrecordid>eNqFUEtLxDAQDqLguvoXfNy8tE6aNGlvyuILFhR0zyFNJ5KlbdakK6y_3izVs6dvYL7HzEfIOYWcAhU369z4Lm6D1XkBlOXA8wQHZEYryTLOyvqQzKAuZCZlKY_JSYxrAOClrGfk6tV3ux5D5vreN65z39heDnrwGx1GZzqMp-TI6i7i2S_Oyerh_n3xlC1fHp8Xd8vMcBBjxpoqpULJKE1jSYuCl2iAN0LWrWRUCFFwtI1GmtbMSmltVWvWCihbJmo2J9eT7yb4zy3GUfUuGuw6PaDfRkWFpHvbiieqmKgm-BgDWrUJrtdhpyiofSdqrf46UftOFHCVIAkvJqHVXumP4KJavSVCCUBlzdJdc3I7MTC9-uUwqGgcDgZbF9CMqvXuv5AfSJJ1Ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671512284</pqid></control><display><type>article</type><title>Polymer-immobilized nanoparticles</title><source>ScienceDirect Freedom Collection</source><creator>Mahouche-Chergui, Samia ; Guerrouache, Mohamed ; Carbonnier, Benjamin ; Chehimi, Mohamed M.</creator><creatorcontrib>Mahouche-Chergui, Samia ; Guerrouache, Mohamed ; Carbonnier, Benjamin ; Chehimi, Mohamed M.</creatorcontrib><description>•Polymer-immobilized nanoparticle hybrids are unique systems for a broad range of applications.•Multistep and one pot strategies are available to design polymer–nanoparticle hybrids.•Applications include separation, sensing, extraction and catalysis.•Unprecedented performances are achieved via the synergy of polymers and nanoparticles. We review methods to prepare polymer-immobilized nanoparticles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nanoparticles. The latter range from soft biomacromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nanoparticles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nanoparticles, while polymers provide excellent platforms for dispersing nanoparticles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2013.04.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biomolecules ; brushes ; Buckminsterfullerene ; Catalysis ; catalytic activity ; chemical bonding ; colloids ; Detection ; DNA ; electrostatic interactions ; Fullerenes ; Immobilized nanoparticles ; Nanoparticles ; physicochemical properties ; Platforms ; Polymeric supports ; polymers ; proteins ; Semiconductors ; Sensing ; Separation</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2013-12, Vol.439, p.43-68</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693</citedby><cites>FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mahouche-Chergui, Samia</creatorcontrib><creatorcontrib>Guerrouache, Mohamed</creatorcontrib><creatorcontrib>Carbonnier, Benjamin</creatorcontrib><creatorcontrib>Chehimi, Mohamed M.</creatorcontrib><title>Polymer-immobilized nanoparticles</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>•Polymer-immobilized nanoparticle hybrids are unique systems for a broad range of applications.•Multistep and one pot strategies are available to design polymer–nanoparticle hybrids.•Applications include separation, sensing, extraction and catalysis.•Unprecedented performances are achieved via the synergy of polymers and nanoparticles. We review methods to prepare polymer-immobilized nanoparticles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nanoparticles. The latter range from soft biomacromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nanoparticles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nanoparticles, while polymers provide excellent platforms for dispersing nanoparticles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.</description><subject>Biomolecules</subject><subject>brushes</subject><subject>Buckminsterfullerene</subject><subject>Catalysis</subject><subject>catalytic activity</subject><subject>chemical bonding</subject><subject>colloids</subject><subject>Detection</subject><subject>DNA</subject><subject>electrostatic interactions</subject><subject>Fullerenes</subject><subject>Immobilized nanoparticles</subject><subject>Nanoparticles</subject><subject>physicochemical properties</subject><subject>Platforms</subject><subject>Polymeric supports</subject><subject>polymers</subject><subject>proteins</subject><subject>Semiconductors</subject><subject>Sensing</subject><subject>Separation</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUEtLxDAQDqLguvoXfNy8tE6aNGlvyuILFhR0zyFNJ5KlbdakK6y_3izVs6dvYL7HzEfIOYWcAhU369z4Lm6D1XkBlOXA8wQHZEYryTLOyvqQzKAuZCZlKY_JSYxrAOClrGfk6tV3ux5D5vreN65z39heDnrwGx1GZzqMp-TI6i7i2S_Oyerh_n3xlC1fHp8Xd8vMcBBjxpoqpULJKE1jSYuCl2iAN0LWrWRUCFFwtI1GmtbMSmltVWvWCihbJmo2J9eT7yb4zy3GUfUuGuw6PaDfRkWFpHvbiieqmKgm-BgDWrUJrtdhpyiofSdqrf46UftOFHCVIAkvJqHVXumP4KJavSVCCUBlzdJdc3I7MTC9-uUwqGgcDgZbF9CMqvXuv5AfSJJ1Ww</recordid><startdate>20131220</startdate><enddate>20131220</enddate><creator>Mahouche-Chergui, Samia</creator><creator>Guerrouache, Mohamed</creator><creator>Carbonnier, Benjamin</creator><creator>Chehimi, Mohamed M.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131220</creationdate><title>Polymer-immobilized nanoparticles</title><author>Mahouche-Chergui, Samia ; Guerrouache, Mohamed ; Carbonnier, Benjamin ; Chehimi, Mohamed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomolecules</topic><topic>brushes</topic><topic>Buckminsterfullerene</topic><topic>Catalysis</topic><topic>catalytic activity</topic><topic>chemical bonding</topic><topic>colloids</topic><topic>Detection</topic><topic>DNA</topic><topic>electrostatic interactions</topic><topic>Fullerenes</topic><topic>Immobilized nanoparticles</topic><topic>Nanoparticles</topic><topic>physicochemical properties</topic><topic>Platforms</topic><topic>Polymeric supports</topic><topic>polymers</topic><topic>proteins</topic><topic>Semiconductors</topic><topic>Sensing</topic><topic>Separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahouche-Chergui, Samia</creatorcontrib><creatorcontrib>Guerrouache, Mohamed</creatorcontrib><creatorcontrib>Carbonnier, Benjamin</creatorcontrib><creatorcontrib>Chehimi, Mohamed M.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahouche-Chergui, Samia</au><au>Guerrouache, Mohamed</au><au>Carbonnier, Benjamin</au><au>Chehimi, Mohamed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer-immobilized nanoparticles</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2013-12-20</date><risdate>2013</risdate><volume>439</volume><spage>43</spage><epage>68</epage><pages>43-68</pages><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>•Polymer-immobilized nanoparticle hybrids are unique systems for a broad range of applications.•Multistep and one pot strategies are available to design polymer–nanoparticle hybrids.•Applications include separation, sensing, extraction and catalysis.•Unprecedented performances are achieved via the synergy of polymers and nanoparticles. We review methods to prepare polymer-immobilized nanoparticles through a plethora of strategies in view of developing systems for separation, sensing, extraction and catalysis. The emphasis is on methods to provide (i) polymer brushes and grafts; (ii) monoliths and porous polymer systems; (iii) natural polymers and (iv) conjugated polymers as platforms for anchoring nanoparticles. The latter range from soft biomacromolecular species (proteins, DNA) to metallic, C60, semiconductor and oxide nanoparticles; they can be attached through electrostatic interactions or covalent bonding. It is very clear that physicochemical properties of polymers (e.g. sensing and separation) are enhanced by anchored nanoparticles, while polymers provide excellent platforms for dispersing nanoparticles for e.g. high catalytic performances. We thus anticipate that the synergetic role of polymeric supports and anchored particles will increasingly be exploited in view of designing unique hybrid systems with unprecedented properties.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2013.04.013</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7757
ispartof Colloids and surfaces. A, Physicochemical and engineering aspects, 2013-12, Vol.439, p.43-68
issn 0927-7757
1873-4359
language eng
recordid cdi_proquest_miscellaneous_1671512284
source ScienceDirect Freedom Collection
subjects Biomolecules
brushes
Buckminsterfullerene
Catalysis
catalytic activity
chemical bonding
colloids
Detection
DNA
electrostatic interactions
Fullerenes
Immobilized nanoparticles
Nanoparticles
physicochemical properties
Platforms
Polymeric supports
polymers
proteins
Semiconductors
Sensing
Separation
title Polymer-immobilized nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer-immobilized%20nanoparticles&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Mahouche-Chergui,%20Samia&rft.date=2013-12-20&rft.volume=439&rft.spage=43&rft.epage=68&rft.pages=43-68&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2013.04.013&rft_dat=%3Cproquest_cross%3E1671512284%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-3b8013053113b8512245ec04b679d73166624efbae1b853f77ff89a3d605d3693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671512284&rft_id=info:pmid/&rfr_iscdi=true