Loading…

A guide to in silico vaccine discovery for eukaryotic pathogens

In this article, a framework for an in silico pipeline is presented as a guide to high-throughput vaccine candidate discovery for eukaryotic pathogens, such as helminths and protozoa. Eukaryotic pathogens are mostly parasitic and cause some of the most damaging and difficult to treat diseases in hum...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in bioinformatics 2013-11, Vol.14 (6), p.753-774
Main Authors: Goodswen, Stephen J, Kennedy, Paul J, Ellis, John T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this article, a framework for an in silico pipeline is presented as a guide to high-throughput vaccine candidate discovery for eukaryotic pathogens, such as helminths and protozoa. Eukaryotic pathogens are mostly parasitic and cause some of the most damaging and difficult to treat diseases in humans and livestock. Consequently, these parasitic pathogens have a significant impact on economy and human health. The pipeline is based on the principle of reverse vaccinology and is constructed from freely available bioinformatics programs. There are several successful applications of reverse vaccinology to the discovery of subunit vaccines against prokaryotic pathogens but not yet against eukaryotic pathogens. The overriding aim of the pipeline, which focuses on eukaryotic pathogens, is to generate through computational processes of elimination and evidence gathering a ranked list of proteins based on a scoring system. These proteins are either surface components of the target pathogen or are secreted by the pathogen and are of a type known to be antigenic. No perfect predictive method is yet available; therefore, the highest-scoring proteins from the list require laboratory validation.
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbs066