Loading…
Controlled synthesis and optical properties of Cu/C core/shell nanoparticles
Copper–carbon core–shell nanoparticles were synthesized on a large scale by metal–organic chemical vapor deposition using copper (II) acetylacetonate as precursor. It was shown that the thickness of carbon shell and the diameter of copper cores could be easily tuned from 1.5 to 7.9 nm and from 15 to...
Saved in:
Published in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2014-08, Vol.16 (8), p.1-8, Article 2545 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-ca65235b7e0e8cc2d0536a53442e36c4fe4e73e3c69357a9c802c80502e95e503 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-ca65235b7e0e8cc2d0536a53442e36c4fe4e73e3c69357a9c802c80502e95e503 |
container_end_page | 8 |
container_issue | 8 |
container_start_page | 1 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 16 |
creator | Ma, Liang Yu, Bowen Wang, Shiliang Su, Geng Huang, Han Chen, Hong He, Yuehui Zou, Jin |
description | Copper–carbon core–shell nanoparticles were synthesized on a large scale by metal–organic chemical vapor deposition using copper (II) acetylacetonate as precursor. It was shown that the thickness of carbon shell and the diameter of copper cores could be easily tuned from 1.5 to 7.9 nm and from 15 to 21 nm, respectively, by controlling the reaction temperature and the flow of carrier gas in the synthesis process. The ultraviolet–visible absorption and fluorescence spectral analyses demonstrated that the thickness and crystallinity of the carbon shells had a significant effect on the surface-plasmon resonance band and the fluorescence emission properties of the copper nanocores, which suggested that the carbon shells could remarkably change the surface electronic states of the copper cores. |
doi_str_mv | 10.1007/s11051-014-2545-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671519265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671519265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ca65235b7e0e8cc2d0536a53442e36c4fe4e73e3c69357a9c802c80502e95e503</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoso-PkDvBVE8FI3X5O0Ryl-wYIXBW8hZqdul5rUTPfgvzfLLiKChzCBeebl5SmKc86uOWNmRpwz4BXjqhKgoIK94oiDEVXd6Nf9_Jd1XTGj1WFxTLRijGvRiKNi3sYwpTgMuCjpK0xLpJ5KFxZlHKfeu6EcUxwxTT1SGbuyXc_a0seEM1riMJTBhTi6vPYD0mlx0LmB8Gw3T4qXu9vn9qGaP90_tjfzykvTTJV3GoSEN4MMa-_FgoHUDqRSAqX2qkOFRqL0upFgXONrJvIDJrABBCZPiqttbu72uUaa7EdPPtdxAeOaLNeGA2-Ehoxe_EFXcZ1Cbmc5gABtDFeZ4lvKp0iUsLNj6j9c-rKc2Y1fu_Vrs1-78Ws3yZe7ZEfZU5dc8D39HIraSCVknTmx5SivwjumXw3-Df8GBGqJJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552567714</pqid></control><display><type>article</type><title>Controlled synthesis and optical properties of Cu/C core/shell nanoparticles</title><source>Springer Nature</source><creator>Ma, Liang ; Yu, Bowen ; Wang, Shiliang ; Su, Geng ; Huang, Han ; Chen, Hong ; He, Yuehui ; Zou, Jin</creator><creatorcontrib>Ma, Liang ; Yu, Bowen ; Wang, Shiliang ; Su, Geng ; Huang, Han ; Chen, Hong ; He, Yuehui ; Zou, Jin</creatorcontrib><description>Copper–carbon core–shell nanoparticles were synthesized on a large scale by metal–organic chemical vapor deposition using copper (II) acetylacetonate as precursor. It was shown that the thickness of carbon shell and the diameter of copper cores could be easily tuned from 1.5 to 7.9 nm and from 15 to 21 nm, respectively, by controlling the reaction temperature and the flow of carrier gas in the synthesis process. The ultraviolet–visible absorption and fluorescence spectral analyses demonstrated that the thickness and crystallinity of the carbon shells had a significant effect on the surface-plasmon resonance band and the fluorescence emission properties of the copper nanocores, which suggested that the carbon shells could remarkably change the surface electronic states of the copper cores.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-014-2545-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Carbon ; Characterization and Evaluation of Materials ; CHEMICAL VAPOR DEPOSITION ; Chemistry and Materials Science ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Copper ; Cores ; Cross-disciplinary physics: materials science; rheology ; Crystallinity ; Exact sciences and technology ; FABRICATION ; Fluorescence ; Fullerenes and related materials ; Fullerenes and related materials; diamonds, graphite ; Inorganic Chemistry ; Lasers ; Materials Science ; Methods of nanofabrication ; Nanoparticles ; Nanotechnology ; Optical Devices ; OPTICAL PROPERTIES ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Optics ; PARTICLES ; Photonics ; Physical Chemistry ; Physics ; Research Paper ; Shells ; Specific materials ; Spectral emissivity ; Synthesis ; Visible and ultraviolet spectra</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2014-08, Vol.16 (8), p.1-8, Article 2545</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ca65235b7e0e8cc2d0536a53442e36c4fe4e73e3c69357a9c802c80502e95e503</citedby><cites>FETCH-LOGICAL-c379t-ca65235b7e0e8cc2d0536a53442e36c4fe4e73e3c69357a9c802c80502e95e503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28734238$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Liang</creatorcontrib><creatorcontrib>Yu, Bowen</creatorcontrib><creatorcontrib>Wang, Shiliang</creatorcontrib><creatorcontrib>Su, Geng</creatorcontrib><creatorcontrib>Huang, Han</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>He, Yuehui</creatorcontrib><creatorcontrib>Zou, Jin</creatorcontrib><title>Controlled synthesis and optical properties of Cu/C core/shell nanoparticles</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Copper–carbon core–shell nanoparticles were synthesized on a large scale by metal–organic chemical vapor deposition using copper (II) acetylacetonate as precursor. It was shown that the thickness of carbon shell and the diameter of copper cores could be easily tuned from 1.5 to 7.9 nm and from 15 to 21 nm, respectively, by controlling the reaction temperature and the flow of carrier gas in the synthesis process. The ultraviolet–visible absorption and fluorescence spectral analyses demonstrated that the thickness and crystallinity of the carbon shells had a significant effect on the surface-plasmon resonance band and the fluorescence emission properties of the copper nanocores, which suggested that the carbon shells could remarkably change the surface electronic states of the copper cores.</description><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Copper</subject><subject>Cores</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallinity</subject><subject>Exact sciences and technology</subject><subject>FABRICATION</subject><subject>Fluorescence</subject><subject>Fullerenes and related materials</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Methods of nanofabrication</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>OPTICAL PROPERTIES</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Optics</subject><subject>PARTICLES</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Research Paper</subject><subject>Shells</subject><subject>Specific materials</subject><subject>Spectral emissivity</subject><subject>Synthesis</subject><subject>Visible and ultraviolet spectra</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoso-PkDvBVE8FI3X5O0Ryl-wYIXBW8hZqdul5rUTPfgvzfLLiKChzCBeebl5SmKc86uOWNmRpwz4BXjqhKgoIK94oiDEVXd6Nf9_Jd1XTGj1WFxTLRijGvRiKNi3sYwpTgMuCjpK0xLpJ5KFxZlHKfeu6EcUxwxTT1SGbuyXc_a0seEM1riMJTBhTi6vPYD0mlx0LmB8Gw3T4qXu9vn9qGaP90_tjfzykvTTJV3GoSEN4MMa-_FgoHUDqRSAqX2qkOFRqL0upFgXONrJvIDJrABBCZPiqttbu72uUaa7EdPPtdxAeOaLNeGA2-Ehoxe_EFXcZ1Cbmc5gABtDFeZ4lvKp0iUsLNj6j9c-rKc2Y1fu_Vrs1-78Ws3yZe7ZEfZU5dc8D39HIraSCVknTmx5SivwjumXw3-Df8GBGqJJw</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Ma, Liang</creator><creator>Yu, Bowen</creator><creator>Wang, Shiliang</creator><creator>Su, Geng</creator><creator>Huang, Han</creator><creator>Chen, Hong</creator><creator>He, Yuehui</creator><creator>Zou, Jin</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>H8G</scope></search><sort><creationdate>20140801</creationdate><title>Controlled synthesis and optical properties of Cu/C core/shell nanoparticles</title><author>Ma, Liang ; Yu, Bowen ; Wang, Shiliang ; Su, Geng ; Huang, Han ; Chen, Hong ; He, Yuehui ; Zou, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ca65235b7e0e8cc2d0536a53442e36c4fe4e73e3c69357a9c802c80502e95e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Copper</topic><topic>Cores</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallinity</topic><topic>Exact sciences and technology</topic><topic>FABRICATION</topic><topic>Fluorescence</topic><topic>Fullerenes and related materials</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Methods of nanofabrication</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>OPTICAL PROPERTIES</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Optics</topic><topic>PARTICLES</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Research Paper</topic><topic>Shells</topic><topic>Specific materials</topic><topic>Spectral emissivity</topic><topic>Synthesis</topic><topic>Visible and ultraviolet spectra</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Liang</creatorcontrib><creatorcontrib>Yu, Bowen</creatorcontrib><creatorcontrib>Wang, Shiliang</creatorcontrib><creatorcontrib>Su, Geng</creatorcontrib><creatorcontrib>Huang, Han</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>He, Yuehui</creatorcontrib><creatorcontrib>Zou, Jin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Copper Technical Reference Library</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Liang</au><au>Yu, Bowen</au><au>Wang, Shiliang</au><au>Su, Geng</au><au>Huang, Han</au><au>Chen, Hong</au><au>He, Yuehui</au><au>Zou, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled synthesis and optical properties of Cu/C core/shell nanoparticles</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>16</volume><issue>8</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>2545</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Copper–carbon core–shell nanoparticles were synthesized on a large scale by metal–organic chemical vapor deposition using copper (II) acetylacetonate as precursor. It was shown that the thickness of carbon shell and the diameter of copper cores could be easily tuned from 1.5 to 7.9 nm and from 15 to 21 nm, respectively, by controlling the reaction temperature and the flow of carrier gas in the synthesis process. The ultraviolet–visible absorption and fluorescence spectral analyses demonstrated that the thickness and crystallinity of the carbon shells had a significant effect on the surface-plasmon resonance band and the fluorescence emission properties of the copper nanocores, which suggested that the carbon shells could remarkably change the surface electronic states of the copper cores.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-014-2545-5</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2014-08, Vol.16 (8), p.1-8, Article 2545 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_miscellaneous_1671519265 |
source | Springer Nature |
subjects | Carbon Characterization and Evaluation of Materials CHEMICAL VAPOR DEPOSITION Chemistry and Materials Science Condensed matter: electronic structure, electrical, magnetic, and optical properties Copper Cores Cross-disciplinary physics: materials science rheology Crystallinity Exact sciences and technology FABRICATION Fluorescence Fullerenes and related materials Fullerenes and related materials diamonds, graphite Inorganic Chemistry Lasers Materials Science Methods of nanofabrication Nanoparticles Nanotechnology Optical Devices OPTICAL PROPERTIES Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Optics PARTICLES Photonics Physical Chemistry Physics Research Paper Shells Specific materials Spectral emissivity Synthesis Visible and ultraviolet spectra |
title | Controlled synthesis and optical properties of Cu/C core/shell nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20synthesis%20and%20optical%20properties%20of%20Cu/C%20core/shell%20nanoparticles&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Ma,%20Liang&rft.date=2014-08-01&rft.volume=16&rft.issue=8&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=2545&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-014-2545-5&rft_dat=%3Cproquest_cross%3E1671519265%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-ca65235b7e0e8cc2d0536a53442e36c4fe4e73e3c69357a9c802c80502e95e503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552567714&rft_id=info:pmid/&rfr_iscdi=true |