Loading…
Hydrolysis behaviour of crosslinked poly(ester anhydride) networks prepared from functionalised poly(ε-caprolactone) precursors
Biodegradable poly(ester anhydride) networks based on functionalised poly(ε-caprolactone) precursors with different hydrophobicities, molecular weights and architectures were synthesised. Networks that were prepared from the star-shaped precursors clearly showed higher gel contents and crosslinking...
Saved in:
Published in: | Reactive & functional polymers 2013-01, Vol.73 (1), p.11-17 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biodegradable poly(ester anhydride) networks based on functionalised poly(ε-caprolactone) precursors with different hydrophobicities, molecular weights and architectures were synthesised. Networks that were prepared from the star-shaped precursors clearly showed higher gel contents and crosslinking densities than the networks that were prepared from the linear precursors. Functionalising with different alkenylsuccinic anhydrides and/or varying the molecular weight of the precursor, the thermal properties, surface hydrophobicity and erosion of the crosslinked networks were widely tailored. The dissolution behaviour of the networks changed dramatically as the molecular weight of the precursor increased from 2000 to 4000g/mol or the alkenyl chain of the alkenylsuccinic anhydride increased from 8 to 18 carbons. The networks that were prepared from the lower molecular weight precursors, without an alkenyl chain or with an 8 carbon alkenyl chain, lost their mass in a few days, whereas the networks that were prepared from higher molecular weight precursors or contained a hydrophobic 18 carbon alkenyl chain did not show any mass loss over a period of 8weeks. |
---|---|
ISSN: | 1381-5148 |
DOI: | 10.1016/j.reactfunctpolym.2012.10.002 |