Loading…

Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings

The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated...

Full description

Saved in:
Bibliographic Details
Published in:Thermochimica acta 2011-01, Vol.513 (1), p.75-82
Main Authors: Xing, Weiyi, Jie, Ganxin, Song, Lei, Hu, Shuang, Lv, Xiaoqi, Wang, Xin, Hu, Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483
cites cdi_FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483
container_end_page 82
container_issue 1
container_start_page 75
container_title Thermochimica acta
container_volume 513
creator Xing, Weiyi
Jie, Ganxin
Song, Lei
Hu, Shuang
Lv, Xiaoqi
Wang, Xin
Hu, Yuan
description The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process.
doi_str_mv 10.1016/j.tca.2010.11.014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671524505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040603110004041</els_id><sourcerecordid>1671524505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi1EJULhB3DCFyQuG2a8X444oYrSSpV6oEHcrMl4NnW02S22U9F_j6NUSFw4zYz1vK-sR6l3CEsE7D7tlplpaeB44xKweaEWaHtT9Z35-VItABqoOqjxlXqd0g4A0FhYqPvLkfaio2SKniZ-0jR5ne8l7mnUXraRPOUwT3oeNM85ly3L7xxGSXpDSbwuL-sfFR8ibUbRwz99uWRKfNqmN-psoDHJ2-d5rtaXX-8urqqb22_XF19uKq5tk6uV3Vi2nQjU1rfWrDyyARJbe8t92RltI2wQse9bY-xgVmZjbWeZ26Gx9bn6eOp9iPOvg6Ts9iGxjCNNMh-Sw67H1jQttAXFE8pxTinK4B5i2FN8cgjuaNXtXLHqjlYdoitWS-bDcz0lpnGIxVlIf4Om7ru6h1Xh3p-4gWZH21iY9fdS1BbxdYN4JD6fCCk2HoNElzjIxOJDFM7Oz-E___gDyAmV2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671524505</pqid></control><display><type>article</type><title>Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xing, Weiyi ; Jie, Ganxin ; Song, Lei ; Hu, Shuang ; Lv, Xiaoqi ; Wang, Xin ; Hu, Yuan</creator><creatorcontrib>Xing, Weiyi ; Jie, Ganxin ; Song, Lei ; Hu, Shuang ; Lv, Xiaoqi ; Wang, Xin ; Hu, Yuan</creatorcontrib><description>The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process.</description><identifier>ISSN: 0040-6031</identifier><identifier>EISSN: 1872-762X</identifier><identifier>DOI: 10.1016/j.tca.2010.11.014</identifier><identifier>CODEN: THACAS</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; calorimeters ; Coatings ; Combustion ; Compounding ingredients ; Cotton ; curing (nonfood products) ; Exact sciences and technology ; Fabrics ; Fibers and threads ; Fireproof agents ; Flame retardancy ; Flame retardants ; Forms of application and semi-finished materials ; Fourier transform infrared spectroscopy ; heat ; oxygen ; Polymer industry, paints, wood ; Scanning electron microscopy ; Spectroscopy ; Technology of polymers ; temperature ; Textiles ; Thermal decomposition ; thermal degradation ; Thermal stability ; thermogravimetry ; ultraviolet radiation ; UV-curable</subject><ispartof>Thermochimica acta, 2011-01, Vol.513 (1), p.75-82</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483</citedby><cites>FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23763709$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Weiyi</creatorcontrib><creatorcontrib>Jie, Ganxin</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Hu, Shuang</creatorcontrib><creatorcontrib>Lv, Xiaoqi</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Hu, Yuan</creatorcontrib><title>Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings</title><title>Thermochimica acta</title><description>The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process.</description><subject>Applied sciences</subject><subject>calorimeters</subject><subject>Coatings</subject><subject>Combustion</subject><subject>Compounding ingredients</subject><subject>Cotton</subject><subject>curing (nonfood products)</subject><subject>Exact sciences and technology</subject><subject>Fabrics</subject><subject>Fibers and threads</subject><subject>Fireproof agents</subject><subject>Flame retardancy</subject><subject>Flame retardants</subject><subject>Forms of application and semi-finished materials</subject><subject>Fourier transform infrared spectroscopy</subject><subject>heat</subject><subject>oxygen</subject><subject>Polymer industry, paints, wood</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Technology of polymers</subject><subject>temperature</subject><subject>Textiles</subject><subject>Thermal decomposition</subject><subject>thermal degradation</subject><subject>Thermal stability</subject><subject>thermogravimetry</subject><subject>ultraviolet radiation</subject><subject>UV-curable</subject><issn>0040-6031</issn><issn>1872-762X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1vEzEQhi1EJULhB3DCFyQuG2a8X444oYrSSpV6oEHcrMl4NnW02S22U9F_j6NUSFw4zYz1vK-sR6l3CEsE7D7tlplpaeB44xKweaEWaHtT9Z35-VItABqoOqjxlXqd0g4A0FhYqPvLkfaio2SKniZ-0jR5ne8l7mnUXraRPOUwT3oeNM85ly3L7xxGSXpDSbwuL-sfFR8ibUbRwz99uWRKfNqmN-psoDHJ2-d5rtaXX-8urqqb22_XF19uKq5tk6uV3Vi2nQjU1rfWrDyyARJbe8t92RltI2wQse9bY-xgVmZjbWeZ26Gx9bn6eOp9iPOvg6Ts9iGxjCNNMh-Sw67H1jQttAXFE8pxTinK4B5i2FN8cgjuaNXtXLHqjlYdoitWS-bDcz0lpnGIxVlIf4Om7ru6h1Xh3p-4gWZH21iY9fdS1BbxdYN4JD6fCCk2HoNElzjIxOJDFM7Oz-E___gDyAmV2w</recordid><startdate>20110120</startdate><enddate>20110120</enddate><creator>Xing, Weiyi</creator><creator>Jie, Ganxin</creator><creator>Song, Lei</creator><creator>Hu, Shuang</creator><creator>Lv, Xiaoqi</creator><creator>Wang, Xin</creator><creator>Hu, Yuan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110120</creationdate><title>Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings</title><author>Xing, Weiyi ; Jie, Ganxin ; Song, Lei ; Hu, Shuang ; Lv, Xiaoqi ; Wang, Xin ; Hu, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>calorimeters</topic><topic>Coatings</topic><topic>Combustion</topic><topic>Compounding ingredients</topic><topic>Cotton</topic><topic>curing (nonfood products)</topic><topic>Exact sciences and technology</topic><topic>Fabrics</topic><topic>Fibers and threads</topic><topic>Fireproof agents</topic><topic>Flame retardancy</topic><topic>Flame retardants</topic><topic>Forms of application and semi-finished materials</topic><topic>Fourier transform infrared spectroscopy</topic><topic>heat</topic><topic>oxygen</topic><topic>Polymer industry, paints, wood</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Technology of polymers</topic><topic>temperature</topic><topic>Textiles</topic><topic>Thermal decomposition</topic><topic>thermal degradation</topic><topic>Thermal stability</topic><topic>thermogravimetry</topic><topic>ultraviolet radiation</topic><topic>UV-curable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Weiyi</creatorcontrib><creatorcontrib>Jie, Ganxin</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Hu, Shuang</creatorcontrib><creatorcontrib>Lv, Xiaoqi</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Hu, Yuan</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thermochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Weiyi</au><au>Jie, Ganxin</au><au>Song, Lei</au><au>Hu, Shuang</au><au>Lv, Xiaoqi</au><au>Wang, Xin</au><au>Hu, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings</atitle><jtitle>Thermochimica acta</jtitle><date>2011-01-20</date><risdate>2011</risdate><volume>513</volume><issue>1</issue><spage>75</spage><epage>82</epage><pages>75-82</pages><issn>0040-6031</issn><eissn>1872-762X</eissn><coden>THACAS</coden><abstract>The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tca.2010.11.014</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6031
ispartof Thermochimica acta, 2011-01, Vol.513 (1), p.75-82
issn 0040-6031
1872-762X
language eng
recordid cdi_proquest_miscellaneous_1671524505
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
calorimeters
Coatings
Combustion
Compounding ingredients
Cotton
curing (nonfood products)
Exact sciences and technology
Fabrics
Fibers and threads
Fireproof agents
Flame retardancy
Flame retardants
Forms of application and semi-finished materials
Fourier transform infrared spectroscopy
heat
oxygen
Polymer industry, paints, wood
Scanning electron microscopy
Spectroscopy
Technology of polymers
temperature
Textiles
Thermal decomposition
thermal degradation
Thermal stability
thermogravimetry
ultraviolet radiation
UV-curable
title Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flame%20retardancy%20and%20thermal%20degradation%20of%20cotton%20textiles%20based%20on%20UV-curable%20flame%20retardant%20coatings&rft.jtitle=Thermochimica%20acta&rft.au=Xing,%20Weiyi&rft.date=2011-01-20&rft.volume=513&rft.issue=1&rft.spage=75&rft.epage=82&rft.pages=75-82&rft.issn=0040-6031&rft.eissn=1872-762X&rft.coden=THACAS&rft_id=info:doi/10.1016/j.tca.2010.11.014&rft_dat=%3Cproquest_cross%3E1671524505%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671524505&rft_id=info:pmid/&rfr_iscdi=true