Loading…
Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings
The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated...
Saved in:
Published in: | Thermochimica acta 2011-01, Vol.513 (1), p.75-82 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483 |
---|---|
cites | cdi_FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483 |
container_end_page | 82 |
container_issue | 1 |
container_start_page | 75 |
container_title | Thermochimica acta |
container_volume | 513 |
creator | Xing, Weiyi Jie, Ganxin Song, Lei Hu, Shuang Lv, Xiaoqi Wang, Xin Hu, Yuan |
description | The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process. |
doi_str_mv | 10.1016/j.tca.2010.11.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671524505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040603110004041</els_id><sourcerecordid>1671524505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi1EJULhB3DCFyQuG2a8X444oYrSSpV6oEHcrMl4NnW02S22U9F_j6NUSFw4zYz1vK-sR6l3CEsE7D7tlplpaeB44xKweaEWaHtT9Z35-VItABqoOqjxlXqd0g4A0FhYqPvLkfaio2SKniZ-0jR5ne8l7mnUXraRPOUwT3oeNM85ly3L7xxGSXpDSbwuL-sfFR8ibUbRwz99uWRKfNqmN-psoDHJ2-d5rtaXX-8urqqb22_XF19uKq5tk6uV3Vi2nQjU1rfWrDyyARJbe8t92RltI2wQse9bY-xgVmZjbWeZ26Gx9bn6eOp9iPOvg6Ts9iGxjCNNMh-Sw67H1jQttAXFE8pxTinK4B5i2FN8cgjuaNXtXLHqjlYdoitWS-bDcz0lpnGIxVlIf4Om7ru6h1Xh3p-4gWZH21iY9fdS1BbxdYN4JD6fCCk2HoNElzjIxOJDFM7Oz-E___gDyAmV2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671524505</pqid></control><display><type>article</type><title>Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xing, Weiyi ; Jie, Ganxin ; Song, Lei ; Hu, Shuang ; Lv, Xiaoqi ; Wang, Xin ; Hu, Yuan</creator><creatorcontrib>Xing, Weiyi ; Jie, Ganxin ; Song, Lei ; Hu, Shuang ; Lv, Xiaoqi ; Wang, Xin ; Hu, Yuan</creatorcontrib><description>The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process.</description><identifier>ISSN: 0040-6031</identifier><identifier>EISSN: 1872-762X</identifier><identifier>DOI: 10.1016/j.tca.2010.11.014</identifier><identifier>CODEN: THACAS</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; calorimeters ; Coatings ; Combustion ; Compounding ingredients ; Cotton ; curing (nonfood products) ; Exact sciences and technology ; Fabrics ; Fibers and threads ; Fireproof agents ; Flame retardancy ; Flame retardants ; Forms of application and semi-finished materials ; Fourier transform infrared spectroscopy ; heat ; oxygen ; Polymer industry, paints, wood ; Scanning electron microscopy ; Spectroscopy ; Technology of polymers ; temperature ; Textiles ; Thermal decomposition ; thermal degradation ; Thermal stability ; thermogravimetry ; ultraviolet radiation ; UV-curable</subject><ispartof>Thermochimica acta, 2011-01, Vol.513 (1), p.75-82</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483</citedby><cites>FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23763709$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Weiyi</creatorcontrib><creatorcontrib>Jie, Ganxin</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Hu, Shuang</creatorcontrib><creatorcontrib>Lv, Xiaoqi</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Hu, Yuan</creatorcontrib><title>Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings</title><title>Thermochimica acta</title><description>The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process.</description><subject>Applied sciences</subject><subject>calorimeters</subject><subject>Coatings</subject><subject>Combustion</subject><subject>Compounding ingredients</subject><subject>Cotton</subject><subject>curing (nonfood products)</subject><subject>Exact sciences and technology</subject><subject>Fabrics</subject><subject>Fibers and threads</subject><subject>Fireproof agents</subject><subject>Flame retardancy</subject><subject>Flame retardants</subject><subject>Forms of application and semi-finished materials</subject><subject>Fourier transform infrared spectroscopy</subject><subject>heat</subject><subject>oxygen</subject><subject>Polymer industry, paints, wood</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Technology of polymers</subject><subject>temperature</subject><subject>Textiles</subject><subject>Thermal decomposition</subject><subject>thermal degradation</subject><subject>Thermal stability</subject><subject>thermogravimetry</subject><subject>ultraviolet radiation</subject><subject>UV-curable</subject><issn>0040-6031</issn><issn>1872-762X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1vEzEQhi1EJULhB3DCFyQuG2a8X444oYrSSpV6oEHcrMl4NnW02S22U9F_j6NUSFw4zYz1vK-sR6l3CEsE7D7tlplpaeB44xKweaEWaHtT9Z35-VItABqoOqjxlXqd0g4A0FhYqPvLkfaio2SKniZ-0jR5ne8l7mnUXraRPOUwT3oeNM85ly3L7xxGSXpDSbwuL-sfFR8ibUbRwz99uWRKfNqmN-psoDHJ2-d5rtaXX-8urqqb22_XF19uKq5tk6uV3Vi2nQjU1rfWrDyyARJbe8t92RltI2wQse9bY-xgVmZjbWeZ26Gx9bn6eOp9iPOvg6Ts9iGxjCNNMh-Sw67H1jQttAXFE8pxTinK4B5i2FN8cgjuaNXtXLHqjlYdoitWS-bDcz0lpnGIxVlIf4Om7ru6h1Xh3p-4gWZH21iY9fdS1BbxdYN4JD6fCCk2HoNElzjIxOJDFM7Oz-E___gDyAmV2w</recordid><startdate>20110120</startdate><enddate>20110120</enddate><creator>Xing, Weiyi</creator><creator>Jie, Ganxin</creator><creator>Song, Lei</creator><creator>Hu, Shuang</creator><creator>Lv, Xiaoqi</creator><creator>Wang, Xin</creator><creator>Hu, Yuan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110120</creationdate><title>Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings</title><author>Xing, Weiyi ; Jie, Ganxin ; Song, Lei ; Hu, Shuang ; Lv, Xiaoqi ; Wang, Xin ; Hu, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>calorimeters</topic><topic>Coatings</topic><topic>Combustion</topic><topic>Compounding ingredients</topic><topic>Cotton</topic><topic>curing (nonfood products)</topic><topic>Exact sciences and technology</topic><topic>Fabrics</topic><topic>Fibers and threads</topic><topic>Fireproof agents</topic><topic>Flame retardancy</topic><topic>Flame retardants</topic><topic>Forms of application and semi-finished materials</topic><topic>Fourier transform infrared spectroscopy</topic><topic>heat</topic><topic>oxygen</topic><topic>Polymer industry, paints, wood</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Technology of polymers</topic><topic>temperature</topic><topic>Textiles</topic><topic>Thermal decomposition</topic><topic>thermal degradation</topic><topic>Thermal stability</topic><topic>thermogravimetry</topic><topic>ultraviolet radiation</topic><topic>UV-curable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Weiyi</creatorcontrib><creatorcontrib>Jie, Ganxin</creatorcontrib><creatorcontrib>Song, Lei</creatorcontrib><creatorcontrib>Hu, Shuang</creatorcontrib><creatorcontrib>Lv, Xiaoqi</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Hu, Yuan</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thermochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Weiyi</au><au>Jie, Ganxin</au><au>Song, Lei</au><au>Hu, Shuang</au><au>Lv, Xiaoqi</au><au>Wang, Xin</au><au>Hu, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings</atitle><jtitle>Thermochimica acta</jtitle><date>2011-01-20</date><risdate>2011</risdate><volume>513</volume><issue>1</issue><spage>75</spage><epage>82</epage><pages>75-82</pages><issn>0040-6031</issn><eissn>1872-762X</eissn><coden>THACAS</coden><abstract>The flame retardant coatings were prepared through UV-curable technique using tri(acryloyloxyethyl) phosphate (TAEP) and triglycidyl isocyanurate acrylate (TGICA). Results from FTIR-ATR spectroscopy and scanning electron microscopy (SEM) showed that flame retardant coatings were successfully coated onto the surface of cotton fabrics. The flame retardancy of the treated fabrics was studied by Micro-scale Combustion Calorimeter (MCC) and limited oxygen index (LOI). The cottons coated flame retardant coatings had the lower peak heat release rate (PHRR), heat release capacity (HRC), total heat of combustion (THC) and higher LOI value compared with untreated cotton. The results from TGA test showed that the flame retardant coatings lowered the decomposition temperature of treated fabric. The thermal decomposition of cottons was monitored by real time FTIR analysis and thermogravimetric analysis/infrared spectrometry (TGA-IR). The enhanced flame retardant action might be caused by thermal decomposition of TAEP structure, producing acidic intermediates, which could react with fabrics to alter its thermal decomposition process.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tca.2010.11.014</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-6031 |
ispartof | Thermochimica acta, 2011-01, Vol.513 (1), p.75-82 |
issn | 0040-6031 1872-762X |
language | eng |
recordid | cdi_proquest_miscellaneous_1671524505 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences calorimeters Coatings Combustion Compounding ingredients Cotton curing (nonfood products) Exact sciences and technology Fabrics Fibers and threads Fireproof agents Flame retardancy Flame retardants Forms of application and semi-finished materials Fourier transform infrared spectroscopy heat oxygen Polymer industry, paints, wood Scanning electron microscopy Spectroscopy Technology of polymers temperature Textiles Thermal decomposition thermal degradation Thermal stability thermogravimetry ultraviolet radiation UV-curable |
title | Flame retardancy and thermal degradation of cotton textiles based on UV-curable flame retardant coatings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flame%20retardancy%20and%20thermal%20degradation%20of%20cotton%20textiles%20based%20on%20UV-curable%20flame%20retardant%20coatings&rft.jtitle=Thermochimica%20acta&rft.au=Xing,%20Weiyi&rft.date=2011-01-20&rft.volume=513&rft.issue=1&rft.spage=75&rft.epage=82&rft.pages=75-82&rft.issn=0040-6031&rft.eissn=1872-762X&rft.coden=THACAS&rft_id=info:doi/10.1016/j.tca.2010.11.014&rft_dat=%3Cproquest_cross%3E1671524505%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-98b8c86ee038d5829d1c20ae83d8c71c2c184ec2111775228f292b8868cc5f483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671524505&rft_id=info:pmid/&rfr_iscdi=true |