Loading…

A wear particle identification method by combining principal component analysis and grey relational analysis

The process to identify wear particles concerns a variety of parameters, some of which may be redundant, and influences the efficiency of computer image analysis. In order to improve the accuracy and speed of debris identification, this paper proposes a new algorithm that combines principal componen...

Full description

Saved in:
Bibliographic Details
Published in:Wear 2013-07, Vol.304 (1-2), p.96-102
Main Authors: Wang, Jingqiu, Wang, Xiaolei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-dd851755d6c570f0855583ffc08c0079a97104eb47d89fbd63bae2128fdaed583
cites cdi_FETCH-LOGICAL-c396t-dd851755d6c570f0855583ffc08c0079a97104eb47d89fbd63bae2128fdaed583
container_end_page 102
container_issue 1-2
container_start_page 96
container_title Wear
container_volume 304
creator Wang, Jingqiu
Wang, Xiaolei
description The process to identify wear particles concerns a variety of parameters, some of which may be redundant, and influences the efficiency of computer image analysis. In order to improve the accuracy and speed of debris identification, this paper proposes a new algorithm that combines principal component analysis and grey relational analysis (CPGA). First, principal component analysis is used to optimise the characteristic parameters of wear particles. Then, an improved grey relational analysis is used to discriminate between similar types of wear particles, such as severe sliding and fatigue particles. The experimental results indicate that the CPGA algorithm can successfully solve the information redundancy problem resulting from multiple parameters and proves to be a practical method to identify wear particles quickly and accurately. •Wear particles identification by principal component and grey relational analysis.•Solve the redundant problem of debris parameters by principal component analysis.•Obtain objective debris identification by improved grey relational analysis.
doi_str_mv 10.1016/j.wear.2013.04.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671530620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043164813002639</els_id><sourcerecordid>1464596377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-dd851755d6c570f0855583ffc08c0079a97104eb47d89fbd63bae2128fdaed583</originalsourceid><addsrcrecordid>eNqFkUuPFCEUhYnRxHb0D7hiY-KmygvFqxI3k4mvZBI3uiYU3Brp0FQJNZr-91L26FJX3HC_cyDnEPKSQc-AqTfH_ie60nNgQw-iB84ekQMzeui41PoxOQCIoWNKmKfkWa1HAGCjVAeSrumupKsrW_QJaQyYtzhH77a4ZHrC7dsS6HSmfjlNMcd8R9cSs4-rS_vduuQmoC67dK6xtiHQu4JnWjD9tmjYn-Vz8mR2qeKLh_OKfH3_7svNx-7284dPN9e3nR9GtXUhGMm0lEF5qWEGI6U0wzx7MB5Aj27UDAROQgczzlNQw-SQM27m4DA09Iq8vviuZfl-j3Wzp1g9puQyLvfVMqWZHEBx-D8qlJCjGrRuKL-gviy1FpxtC-LkytkysHsL9mj3LO3eggVhWwtN9OrB31Xv0lxci67-VXLdvmsEb9zbC4ctlx8Ri60-YvYYYkG_2bDEfz3zC80xnxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464596377</pqid></control><display><type>article</type><title>A wear particle identification method by combining principal component analysis and grey relational analysis</title><source>ScienceDirect Journals</source><creator>Wang, Jingqiu ; Wang, Xiaolei</creator><creatorcontrib>Wang, Jingqiu ; Wang, Xiaolei</creatorcontrib><description>The process to identify wear particles concerns a variety of parameters, some of which may be redundant, and influences the efficiency of computer image analysis. In order to improve the accuracy and speed of debris identification, this paper proposes a new algorithm that combines principal component analysis and grey relational analysis (CPGA). First, principal component analysis is used to optimise the characteristic parameters of wear particles. Then, an improved grey relational analysis is used to discriminate between similar types of wear particles, such as severe sliding and fatigue particles. The experimental results indicate that the CPGA algorithm can successfully solve the information redundancy problem resulting from multiple parameters and proves to be a practical method to identify wear particles quickly and accurately. •Wear particles identification by principal component and grey relational analysis.•Solve the redundant problem of debris parameters by principal component analysis.•Obtain objective debris identification by improved grey relational analysis.</description><identifier>ISSN: 0043-1648</identifier><identifier>EISSN: 1873-2577</identifier><identifier>DOI: 10.1016/j.wear.2013.04.021</identifier><identifier>CODEN: WEARAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Debris ; Exact sciences and technology ; Fatigue (materials) ; Ferrography ; Fundamental areas of phenomenology (including applications) ; Grey relational analysis ; Image analysis ; Mechanical contact (friction...) ; Physics ; Principal component analysis ; Redundant ; Solid mechanics ; Structural and continuum mechanics ; Wear ; Wear particle identification ; Wear particles</subject><ispartof>Wear, 2013-07, Vol.304 (1-2), p.96-102</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-dd851755d6c570f0855583ffc08c0079a97104eb47d89fbd63bae2128fdaed583</citedby><cites>FETCH-LOGICAL-c396t-dd851755d6c570f0855583ffc08c0079a97104eb47d89fbd63bae2128fdaed583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27583842$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jingqiu</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><title>A wear particle identification method by combining principal component analysis and grey relational analysis</title><title>Wear</title><description>The process to identify wear particles concerns a variety of parameters, some of which may be redundant, and influences the efficiency of computer image analysis. In order to improve the accuracy and speed of debris identification, this paper proposes a new algorithm that combines principal component analysis and grey relational analysis (CPGA). First, principal component analysis is used to optimise the characteristic parameters of wear particles. Then, an improved grey relational analysis is used to discriminate between similar types of wear particles, such as severe sliding and fatigue particles. The experimental results indicate that the CPGA algorithm can successfully solve the information redundancy problem resulting from multiple parameters and proves to be a practical method to identify wear particles quickly and accurately. •Wear particles identification by principal component and grey relational analysis.•Solve the redundant problem of debris parameters by principal component analysis.•Obtain objective debris identification by improved grey relational analysis.</description><subject>Algorithms</subject><subject>Debris</subject><subject>Exact sciences and technology</subject><subject>Fatigue (materials)</subject><subject>Ferrography</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Grey relational analysis</subject><subject>Image analysis</subject><subject>Mechanical contact (friction...)</subject><subject>Physics</subject><subject>Principal component analysis</subject><subject>Redundant</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Wear</subject><subject>Wear particle identification</subject><subject>Wear particles</subject><issn>0043-1648</issn><issn>1873-2577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUuPFCEUhYnRxHb0D7hiY-KmygvFqxI3k4mvZBI3uiYU3Brp0FQJNZr-91L26FJX3HC_cyDnEPKSQc-AqTfH_ie60nNgQw-iB84ekQMzeui41PoxOQCIoWNKmKfkWa1HAGCjVAeSrumupKsrW_QJaQyYtzhH77a4ZHrC7dsS6HSmfjlNMcd8R9cSs4-rS_vduuQmoC67dK6xtiHQu4JnWjD9tmjYn-Vz8mR2qeKLh_OKfH3_7svNx-7284dPN9e3nR9GtXUhGMm0lEF5qWEGI6U0wzx7MB5Aj27UDAROQgczzlNQw-SQM27m4DA09Iq8vviuZfl-j3Wzp1g9puQyLvfVMqWZHEBx-D8qlJCjGrRuKL-gviy1FpxtC-LkytkysHsL9mj3LO3eggVhWwtN9OrB31Xv0lxci67-VXLdvmsEb9zbC4ctlx8Ri60-YvYYYkG_2bDEfz3zC80xnxA</recordid><startdate>20130715</startdate><enddate>20130715</enddate><creator>Wang, Jingqiu</creator><creator>Wang, Xiaolei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130715</creationdate><title>A wear particle identification method by combining principal component analysis and grey relational analysis</title><author>Wang, Jingqiu ; Wang, Xiaolei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-dd851755d6c570f0855583ffc08c0079a97104eb47d89fbd63bae2128fdaed583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Debris</topic><topic>Exact sciences and technology</topic><topic>Fatigue (materials)</topic><topic>Ferrography</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Grey relational analysis</topic><topic>Image analysis</topic><topic>Mechanical contact (friction...)</topic><topic>Physics</topic><topic>Principal component analysis</topic><topic>Redundant</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Wear</topic><topic>Wear particle identification</topic><topic>Wear particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jingqiu</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wear</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jingqiu</au><au>Wang, Xiaolei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A wear particle identification method by combining principal component analysis and grey relational analysis</atitle><jtitle>Wear</jtitle><date>2013-07-15</date><risdate>2013</risdate><volume>304</volume><issue>1-2</issue><spage>96</spage><epage>102</epage><pages>96-102</pages><issn>0043-1648</issn><eissn>1873-2577</eissn><coden>WEARAH</coden><abstract>The process to identify wear particles concerns a variety of parameters, some of which may be redundant, and influences the efficiency of computer image analysis. In order to improve the accuracy and speed of debris identification, this paper proposes a new algorithm that combines principal component analysis and grey relational analysis (CPGA). First, principal component analysis is used to optimise the characteristic parameters of wear particles. Then, an improved grey relational analysis is used to discriminate between similar types of wear particles, such as severe sliding and fatigue particles. The experimental results indicate that the CPGA algorithm can successfully solve the information redundancy problem resulting from multiple parameters and proves to be a practical method to identify wear particles quickly and accurately. •Wear particles identification by principal component and grey relational analysis.•Solve the redundant problem of debris parameters by principal component analysis.•Obtain objective debris identification by improved grey relational analysis.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wear.2013.04.021</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1648
ispartof Wear, 2013-07, Vol.304 (1-2), p.96-102
issn 0043-1648
1873-2577
language eng
recordid cdi_proquest_miscellaneous_1671530620
source ScienceDirect Journals
subjects Algorithms
Debris
Exact sciences and technology
Fatigue (materials)
Ferrography
Fundamental areas of phenomenology (including applications)
Grey relational analysis
Image analysis
Mechanical contact (friction...)
Physics
Principal component analysis
Redundant
Solid mechanics
Structural and continuum mechanics
Wear
Wear particle identification
Wear particles
title A wear particle identification method by combining principal component analysis and grey relational analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A32%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20wear%20particle%20identification%20method%20by%20combining%20principal%20component%20analysis%20and%20grey%20relational%20analysis&rft.jtitle=Wear&rft.au=Wang,%20Jingqiu&rft.date=2013-07-15&rft.volume=304&rft.issue=1-2&rft.spage=96&rft.epage=102&rft.pages=96-102&rft.issn=0043-1648&rft.eissn=1873-2577&rft.coden=WEARAH&rft_id=info:doi/10.1016/j.wear.2013.04.021&rft_dat=%3Cproquest_cross%3E1464596377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-dd851755d6c570f0855583ffc08c0079a97104eb47d89fbd63bae2128fdaed583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464596377&rft_id=info:pmid/&rfr_iscdi=true