Loading…

A hybrid distributed-centralized conflict resolution approach for multi-aircraft based on cooperative co-evolutionary

Conflict resolution (CR) plays a crucial role in safe air traffic management (ATM). In this paper, we propose a new hybrid distributed-centralized tactical CR approach based on cooperative co-evolutionary named the CCDG (cooperative co-evolutionary with dynamic grouping) strategy to overcome the dra...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Information sciences 2013-12, Vol.56 (12), p.277-292
Main Authors: Zhang, XueJun, Guan, XiangMin, Hwang, Inseok, Cai, KaiQuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conflict resolution (CR) plays a crucial role in safe air traffic management (ATM). In this paper, we propose a new hybrid distributed-centralized tactical CR approach based on cooperative co-evolutionary named the CCDG (cooperative co-evolutionary with dynamic grouping) strategy to overcome the drawbacks of the current two types of approaches, the totally centralized approach and distributed approach. Firstly, aircraft are divided into several sub-groups based on their interdependence. Besides, a dynamic grouping strategy is proposed to group the aircraft to better deal with the tight coupling among them. The sub-groups are adjusted dynamically as new conflicts appear after each iteration. Secondly, a fast genetic algorithm (GA) is used by each sub-group to optimize the paths of the aircraft simultaneously. Thirdly, the aircraft's optimal paths are obtained through cooperation among different sub-groups based on cooperative co-evolutionary (CC). An experimental study on two illustrative scenarios is conducted to compare the CCDG method with some other existing approaches and it is shown that CCDG which can get the optimal solution effectively and efficiently in near real time, outperforms most of the existing approaches including Stratway, the fast GA, a general evolutionary path planner, as well as three well-known cooperative co-evolution algorithms.
ISSN:1674-733X
1869-1919
DOI:10.1007/s11432-013-4836-3