Loading…

Thermal conductivity improvement of phase change materials/graphite foam composites

Effective thermal conductivity of composites of graphite foam infiltrated with phase change materials (PCM) was investigated numerically and experimentally. Graphite foam, as a highly-conductive, highly-porous structure, is an excellent candidate for infiltrating PCM into its pores and forming therm...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2013-08, Vol.60, p.117-128
Main Authors: Moeini Sedeh, Mahmoud, Khodadadi, J.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Effective thermal conductivity of composites of graphite foam infiltrated with phase change materials (PCM) was investigated numerically and experimentally. Graphite foam, as a highly-conductive, highly-porous structure, is an excellent candidate for infiltrating PCM into its pores and forming thermal energy storage composites with improved effective thermal conductivity. For numerical simulation, the graphite structure was modeled as a three-dimensional body-centered cube arrangement of uniform spherical pores, saturated with PCM thus forming a cubic representative elementary volume (REV). Thermal analysis of the developed REV was conducted for unidirectional heat transfer and the total heat flux was determined, which leads to the effective thermal conductivity evaluation. For experimental verification, a sample of graphite foam was infiltrated with PCM. The effective thermal conductivity was evaluated using the direct method of measuring temperature within the sample under fixed heat flux in unidirectional heat transfer. The results indicate a noticeable improvement in the effective thermal conductivity of composites compared to the PCM. Our numerical and experimental results are in agreement and are also consistent with reported experimental results on graphite foam. Moreover, the role of natural convection within the pores is found to be negligible.
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2013.04.004