Loading…
An Efficient Algorithm for Calculating Maximum Bipartite matching in a Graph
In this article, the authors proposed a new approximation algorithm for calculating the min-cut tree of an undirected edge-weighted graph. Their algorithm runs in O (V2.logV + V2.d), where V is the number of vertices in the given graph and d is the degree of the graph. It is a significant improvemen...
Saved in:
Published in: | International journal of advanced computer research 2013-06, Vol.3 (2), p.193-193 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 193 |
container_issue | 2 |
container_start_page | 193 |
container_title | International journal of advanced computer research |
container_volume | 3 |
creator | Bora, Neha Arora, Swati Arora, Nitin |
description | In this article, the authors proposed a new approximation algorithm for calculating the min-cut tree of an undirected edge-weighted graph. Their algorithm runs in O (V2.logV + V2.d), where V is the number of vertices in the given graph and d is the degree of the graph. It is a significant improvement over time complexities of existing solutions. The authors implemented their algorithm in objected oriented programming language and checked for many input cases. However, because of an assumption, it does not produce correct result for all sorts of graphs, but for the dense graphs success rate is more than 90%. Moreover, in the unsuccessful cases, the deviation from actual result is very less and for most of the pairs they obtain correct values of max-flow. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671539918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106672931</sourcerecordid><originalsourceid>FETCH-LOGICAL-p618-20f651663b2b2eaa91e888546ec78b4f7926d0e955e92233e93d167d5ce9b6983</originalsourceid><addsrcrecordid>eNpdjktLxDAcxIsouKz7HQJevBTyfhxrWVeh4mXvJW3_3UbSh0kKfny76MnTDDM_hrnJdpQqlSuj8O3Vc5OrLbjPDjG6BnOuOKYa77KqmNCx713rYEqo8Jc5uDSMqJ8DKq1vV2-Tmy7o3X67cR3Rs1tsSC4BGm1qh2vlJmTRKdhleMjueusjHP50n51fjufyNa8-Tm9lUeWLJDqnuJeCSMka2lCw1hDQWgsuoVW64b0yVHYYjBBgKGUMDOuIVJ1owTTSaLbPnn5nlzB_rRBTPbrYgvd2gnmN9QYTwYwhV_TxH_o5r2HaztWEc04ElZKzH3mwV5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444152664</pqid></control><display><type>article</type><title>An Efficient Algorithm for Calculating Maximum Bipartite matching in a Graph</title><source>Publicly Available Content (ProQuest)</source><creator>Bora, Neha ; Arora, Swati ; Arora, Nitin</creator><creatorcontrib>Bora, Neha ; Arora, Swati ; Arora, Nitin</creatorcontrib><description>In this article, the authors proposed a new approximation algorithm for calculating the min-cut tree of an undirected edge-weighted graph. Their algorithm runs in O (V2.logV + V2.d), where V is the number of vertices in the given graph and d is the degree of the graph. It is a significant improvement over time complexities of existing solutions. The authors implemented their algorithm in objected oriented programming language and checked for many input cases. However, because of an assumption, it does not produce correct result for all sorts of graphs, but for the dense graphs success rate is more than 90%. Moreover, in the unsuccessful cases, the deviation from actual result is very less and for most of the pairs they obtain correct values of max-flow.</description><identifier>ISSN: 2249-7277</identifier><identifier>EISSN: 2277-7970</identifier><language>eng</language><publisher>Bhopal: Accent Social and Welfare Society</publisher><subject>Algorithms ; Approximation ; Deviation ; Graphs ; Mathematical analysis ; Mathematical models ; Programming languages ; Trees</subject><ispartof>International journal of advanced computer research, 2013-06, Vol.3 (2), p.193-193</ispartof><rights>Copyright International Journal of Advanced Computer Research Jun 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1444152664/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1444152664?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,36989,36990,44566,75096</link.rule.ids></links><search><creatorcontrib>Bora, Neha</creatorcontrib><creatorcontrib>Arora, Swati</creatorcontrib><creatorcontrib>Arora, Nitin</creatorcontrib><title>An Efficient Algorithm for Calculating Maximum Bipartite matching in a Graph</title><title>International journal of advanced computer research</title><description>In this article, the authors proposed a new approximation algorithm for calculating the min-cut tree of an undirected edge-weighted graph. Their algorithm runs in O (V2.logV + V2.d), where V is the number of vertices in the given graph and d is the degree of the graph. It is a significant improvement over time complexities of existing solutions. The authors implemented their algorithm in objected oriented programming language and checked for many input cases. However, because of an assumption, it does not produce correct result for all sorts of graphs, but for the dense graphs success rate is more than 90%. Moreover, in the unsuccessful cases, the deviation from actual result is very less and for most of the pairs they obtain correct values of max-flow.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Deviation</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Programming languages</subject><subject>Trees</subject><issn>2249-7277</issn><issn>2277-7970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdjktLxDAcxIsouKz7HQJevBTyfhxrWVeh4mXvJW3_3UbSh0kKfny76MnTDDM_hrnJdpQqlSuj8O3Vc5OrLbjPDjG6BnOuOKYa77KqmNCx713rYEqo8Jc5uDSMqJ8DKq1vV2-Tmy7o3X67cR3Rs1tsSC4BGm1qh2vlJmTRKdhleMjueusjHP50n51fjufyNa8-Tm9lUeWLJDqnuJeCSMka2lCw1hDQWgsuoVW64b0yVHYYjBBgKGUMDOuIVJ1owTTSaLbPnn5nlzB_rRBTPbrYgvd2gnmN9QYTwYwhV_TxH_o5r2HaztWEc04ElZKzH3mwV5c</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Bora, Neha</creator><creator>Arora, Swati</creator><creator>Arora, Nitin</creator><general>Accent Social and Welfare Society</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20130601</creationdate><title>An Efficient Algorithm for Calculating Maximum Bipartite matching in a Graph</title><author>Bora, Neha ; Arora, Swati ; Arora, Nitin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p618-20f651663b2b2eaa91e888546ec78b4f7926d0e955e92233e93d167d5ce9b6983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Deviation</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Programming languages</topic><topic>Trees</topic><toplevel>online_resources</toplevel><creatorcontrib>Bora, Neha</creatorcontrib><creatorcontrib>Arora, Swati</creatorcontrib><creatorcontrib>Arora, Nitin</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bora, Neha</au><au>Arora, Swati</au><au>Arora, Nitin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm for Calculating Maximum Bipartite matching in a Graph</atitle><jtitle>International journal of advanced computer research</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>3</volume><issue>2</issue><spage>193</spage><epage>193</epage><pages>193-193</pages><issn>2249-7277</issn><eissn>2277-7970</eissn><abstract>In this article, the authors proposed a new approximation algorithm for calculating the min-cut tree of an undirected edge-weighted graph. Their algorithm runs in O (V2.logV + V2.d), where V is the number of vertices in the given graph and d is the degree of the graph. It is a significant improvement over time complexities of existing solutions. The authors implemented their algorithm in objected oriented programming language and checked for many input cases. However, because of an assumption, it does not produce correct result for all sorts of graphs, but for the dense graphs success rate is more than 90%. Moreover, in the unsuccessful cases, the deviation from actual result is very less and for most of the pairs they obtain correct values of max-flow.</abstract><cop>Bhopal</cop><pub>Accent Social and Welfare Society</pub><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2249-7277 |
ispartof | International journal of advanced computer research, 2013-06, Vol.3 (2), p.193-193 |
issn | 2249-7277 2277-7970 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671539918 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Approximation Deviation Graphs Mathematical analysis Mathematical models Programming languages Trees |
title | An Efficient Algorithm for Calculating Maximum Bipartite matching in a Graph |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20for%20Calculating%20Maximum%20Bipartite%20matching%20in%20a%20Graph&rft.jtitle=International%20journal%20of%20advanced%20computer%20research&rft.au=Bora,%20Neha&rft.date=2013-06-01&rft.volume=3&rft.issue=2&rft.spage=193&rft.epage=193&rft.pages=193-193&rft.issn=2249-7277&rft.eissn=2277-7970&rft_id=info:doi/&rft_dat=%3Cproquest%3E3106672931%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p618-20f651663b2b2eaa91e888546ec78b4f7926d0e955e92233e93d167d5ce9b6983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1444152664&rft_id=info:pmid/&rfr_iscdi=true |